4. [12 points] In preparation for the holidays, a local bookstore is planning to sell mugs of a variety of shapes. Suppose that the amount of liquid in a "UM" mug if filled to a depth of h cm is $L(h)=U h\left(3 M^{2}-3 M h+h^{2}\right) \mathrm{cm}^{3}$ for $U, M>0$.
a. [4 points] Find and classify any critical points of L on the interval $(0,5 M)$.

Solution: Taking the derivative gives

$$
L^{\prime}(h)=U\left(3 M^{2}-6 M h+3 h^{2}\right)=3 U\left(M^{2}-2 M h+h^{2}\right)=3 U(M-h)^{2} .
$$

Thus, the only critical point occurs at $h=M$. Note that the factor $(M-h)^{2}$ is positive for all h, so the function is increasing to the left of $h=M$ and to the right of $h=M$. Thus, the critical point is neither a local maximum nor a local minimum.
b. [2 points] Determine any points of inflection of L on the interval $(0,5 M)$.

Solution: The second derivative, $L^{\prime \prime}(h)=-6 U(M-h)$, shows a potential inflection point at $h=M$. The sign of the factor $-6 U$ is always negative. The sign of the factor $(M-h)$ is positive to the left of $h=M$ and negative to the right. Thus, the product gives us $L^{\prime \prime}(h)<0$ for $h<M$, and $L^{\prime \prime}(h)>0$ for $h>M$, and the function changes from concave down to concave up at $h=M$, so L has an inflection point at $h=M$.
c. [6 points] Suppose you are pouring coffee into a "UM" mug at a rate of $15 \mathrm{~cm}^{3}$ per second. At what rate is the depth of the coffee in the mug changing when the coffee reaches a depth of 4 cm in the mug?

Solution: Given $d L / d t=15 \mathrm{~cm}^{3} / \mathrm{s}$, we want to find $d h / d t$ when $h=4 \mathrm{~cm}$. We know

$$
\frac{d L}{d t}=\frac{d L}{d h} \cdot \frac{d h}{d t},
$$

so, when $h=4$, we have

$$
15=3 U(M-4)^{2} \cdot \frac{d h}{d t}
$$

and

$$
\frac{d h}{d t}=\frac{15}{3 U(M-4)^{2}} \mathrm{~cm} / \text { second. }
$$

