1. [10 points] Given below is a graph of a function $f(x)$ and a table for a function $g(x)$.

x	0	1	2	3	4
$g(x)$	4	3	1	2	$\frac{20}{3}$
$g^{\prime}(x)$	-2	$-\frac{5}{2}$	$\frac{1}{2}$	3	$-\frac{1}{3}$

Give answers for the following or write "Does not exist." No partial credit will be given.
i) $\frac{d}{d x} f(g(x))$ at $x=0 \quad$ By the chain rule $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$. At $x=0$ we have

$$
f^{\prime}(g(0)) g^{\prime}(0)=f^{\prime}(4) \cdot(-2)=4
$$

ii) $\frac{d}{d x}[f(x) g(x)]$ at $x=2 \quad$ By the product rule $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$. At $x=2$ we have

$$
f^{\prime}(2) g(2)+f(2) g^{\prime}(2)=(2 / 3)(1)+(4 / 3)(1 / 2)=4 / 3
$$

iii) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]$ at $x=4 \quad$ By the quotient rule $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$. At $x=4$ we have

$$
\frac{f^{\prime}(4) g(4)-f(4) g^{\prime}(4)}{[g(4)]^{2}}=\frac{(-2)(20 / 3)-(0)(-1 / 3)}{(20 / 3)^{2}}=-3 / 10
$$

iv) $\frac{d}{d x}[g(f(x))]$ at $x=3 \quad$ We know $g^{\prime}(f(3))=1 / 2$, so for values of y near $f(3), g(y)$ looks like a line with slope $1 / 2$. So $g(f(x))$ "looks like" $\frac{1}{2} f(x)+b$ for some constant b, for x near 3. Since $f(x)$ is "pointy" at $x=3, \frac{1}{2} f(x)+b$ looks like a vertically compressed version of this pointy graph (near $x=3$), which is still pointy. So $g(f(x))$ is also pointy at $x=3$, hence not differentiable.
v) $f\left(g^{\prime}(3)\right) \quad$ By the table, $g^{\prime}(3)=3$, so $f\left(g^{\prime}(3)\right)=f(3)=2$.

