3. [15 points] Answer "True" or "False" for each of the following, and include a brief explanation of your answer. A picture may be sufficient for an explanation, if appropriate. The functions h, h^{\prime}, m and m^{\prime} referred to in the problem are all differentiable on their domain. The letters a and b represent constants.
i) If $y=h^{\prime}(x) m(x)-h(x) m^{\prime}(x)$, then $\frac{d y}{d x}=h^{\prime \prime}(x) m(x)-h(x) m^{\prime \prime}(x)$.

True False

Solution:

$$
\frac{d y}{d x}=h^{\prime \prime}(x) m(x)+h^{\prime}(x) m^{\prime}(x)-h^{\prime}(x) m^{\prime}(x)-h(x) m^{\prime \prime}(x)=h^{\prime \prime}(x) m(x)-h(x) m^{\prime \prime}(x) .
$$

ii) If $m^{\prime \prime}(a)=0$, then $m(x)$ has an inflection point at $x=a$.

> True

False
Solution: The function $f(x)=x^{4}$ has $f^{\prime \prime}(0)=0$, but $f^{\prime \prime}$ is positive on either side of $x=0$ so there is not an inflection point at $x=0$.
iii) If $h^{\prime \prime}(x)>0$ on the interval $[a, b]$ and $h(a)>h(b)$, then $h(a)$ is the absolute maximum value of $h(x)$ on $[a, b]$.

> | True |
| :--- |

False
Solution: Since h is concave up for the entire interval, any critical points on the interval must be local minima. This means the maximum must occur at an endpoint (either $x=a$ or $x=b$) of the interval. The maximum value must be $h(a)$ because it is larger than $h(b)$.
iv) There exists a continuous function $f(x)$ which is not differentiable at $x=0$ with a local maximum at $(0,5)$.

> | True |
| :--- |

False
Solution: The function $f(x)=-|x|+5$ has a local maximum at $(0,5)$, but has a corner at this point, so it is not differentiable at $x=0$.
v) The function $g(x)=e^{-(x-a)^{2} / b}$ has a local maximum at $x=b$.

True

False
Solution: The derivative of g is

$$
g^{\prime}(x)=-\frac{2(x-a)}{b} e^{-(x-a)^{2} / b}
$$

so the only critical point of g is at $x=a$. Therefore there cannot be a local max at $x=b$ since it is not a critical point.

