5. [12 points] Suppose a curve in the plane is given by the equation

$$
\sin (\pi x y)=y-1
$$

a. [3 points] Verify that the point $(x, y)=(1,1)$ is on the curve.

Solution: At $(1,1)$, the right hand side is $\sin (\pi)=0$ and the left hand side is $1-1=0$. Therefore the point is on the curve since the right and left hand sides are equal.
b. [5 points] Calculate $\frac{d y}{d x}$.

Solution: Taking the derivative with respect to x of the equation, we have

$$
\pi \cos (\pi x y) \cdot\left(y+x \frac{d y}{d x}\right)=\frac{d y}{d x} .
$$

Solving for $\frac{d y}{d x}$, we get

$$
\frac{d y}{d x}=\frac{\pi y \cos (\pi x y)}{1-\pi x \cos (\pi x y)} .
$$

c. [4 points] Find the equation for the tangent line to the curve at the point $(1,1)$.

Solution: The slope of the tangent line to the curve is

$$
\frac{d y}{d x}(1,1)=\frac{\pi \cos (\pi)}{1-\pi \cos (\pi)}=\frac{-\pi}{1+\pi} .
$$

The equation for the tangent line is

$$
y-1=\frac{-\pi}{1+\pi}(x-1) .
$$

