7. [15 points] Suppose a is a positive constant and

$$
f(x)=2 x^{3}-3 a x^{2} .
$$

a. [10 points] Find the absolute maximum and minimum values of $f(x)$ on the closed interval $\left[-a, \frac{3}{2} a\right]$. Specify all x values where the maximum and minimum value are achieved.
Solution: Seeking critical points, we take the derivative of f and set it equal to zero.

$$
f^{\prime}(x)=6 x^{2}-6 a x=6 x(x-a)=0 .
$$

Using this equation we find the critical points to be $x=0, a$. Now we put the critical points and the endpoints of the interval back into the orginal function and compare the values. We compute $f(-a)=-5 a^{3}, f(0)=0, f(a)=-a^{3}, f\left(\frac{3}{2} a\right)=0$.
This means the absolute max of f on this interval is 0 and this value is achieved at $x=0, \frac{3}{2} a$. The absolute min is $-5 a^{3}$ and this value is achieved at $x=-a$.
b. [5 points] Find all inflection points of $f(x)$.

Solution: Seeking inflection points, we find $f^{\prime \prime}(x)=12 x-6 a$. Setting this equal to zero we find $x=\frac{a}{2}$. To verify this is an inflection point we test $f^{\prime \prime}(0)=-6 a<0$ and $f^{\prime \prime}(a)=6 a>0$. This means $f^{\prime \prime}$ changes sign at $x=\frac{a}{2}$, so it is an inflection point.

