9. [12 points] Suppose \(w(x) \) is an everywhere differentiable function which satisfies the following conditions:

- \(w'(0) = 0 \).
- \(w'(x) > 0 \) for \(x > 0 \).
- \(w'(x) < 0 \) for \(x < 0 \).

Let \(f(t) = t^2 + bt + c \) where \(b \) and \(c \) are positive constants with \(b^2 > 4c \). Define \(L(t) = w(f(t)) \).

a. [2 points] Compute \(L'(t) \). Your answer may involve \(w \) and/or \(w' \) and constants \(b \) and \(c \).

b. [4 points] Using your answer from (a), find the critical points of \(L(t) \) in terms of the constants \(b \) and \(c \).

c. [6 points] Classify each critical point you found in (b). Be sure to fully justify your answer.