9. [12 points] Suppose $w(x)$ is an everywhere differentiable function which satisfies the following conditions:

- $w^{\prime}(0)=0$.
- $w^{\prime}(x)>0$ for $x>0$.
- $w^{\prime}(x)<0$ for $x<0$.

Let $f(t)=t^{2}+b t+c$ where b and c are positive constants with $b^{2}>4 c$. Define $L(t)=w(f(t))$.
a. [2 points] Compute $L^{\prime}(t)$. Your answer may involve w and/or w^{\prime} and constants b and c.
b. [4 points] Using your answer from (a), find the critical points of $L(t)$ in terms of the constants b and c.
c. [6 points] Classify each critical point you found in (b). Be sure to fully justify your answer.

