1. [9 points] Let $U=f(t)$ give the number of Facebook users in millions in year t. Suppose $f(2005)=5.5$ and $f^{\prime}(2005)=4.9$. For this problem assume that $f(t)$ is strictly increasing.
a. [4 points] Find and interpret, in practical terms, $f^{-1}(5.5)$.

Solution:
The year in which there were 5.5 million Facebook users was 2005.

$$
f^{-1}(5.5)=\Longrightarrow \quad 2005(\text { year })
$$

b. [5 points] Showing work, evaluate $\left(f^{-1}\right)^{\prime}(5.5)$. Interpret your answer in practical terms.

Solution:
$\left(f^{-1}\right)^{\prime}(5.5)=1 /\left(f^{\prime}\left(f^{-1}(5.5)\right)=1 / f^{\prime}(2005)=1 / 4.9\right.$.
When the number of Facebook users was 5.5 million, in $1 / 4.9(\sim 0.2)$ years the number of Facebook users will have increased by approximately 1 million users.

$$
\left(f^{-1}\right)^{\prime}(5.5)=1 / 4.9 \text { years per million users }
$$

2. [8 points] Recall the function $T(x)$ that took the number of followers (in millions) of a Twitter user and returned a value from 0 to 10 called the user's Twitter celebrity index. The derivative of $T(x)$ is given by the function

$$
T^{\prime}(x)=\frac{1532.5 \cdot(0.6)^{x}}{\left(5+60(0.6)^{x}\right)^{2}} .
$$

a. [4 points] If $T(3)=1.56$, compute the local linearization of $T(x)$ near $x=3$.

Solution: The formula for the local linearization for a function $f(x)$ near a point $x=a$ is

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

To use this formula for $T(x)$, we will need to find $T^{\prime}(3)=\frac{1532 \cdot 5 \cdot(0.6)^{3}}{\left(5+60(0.6)^{3}\right)^{2}} \approx 1.0262$. Then, the local linearization is $L(x)=1.56+1.0262(x-3)$.
b. [4 points] Use your expression from (a) to approximate the Twitter celebrity index of a celebrity with 3.2 million followers.
Solution: $\quad L(3.2)=1.56+1.0262(3.2-3)=1.7652(\mathrm{TCI})$.

