3. [12 points] Consider the prism with equilateral triangles of side length ℓ centimeters for ends and a length of h centimeters, illustrated below. The volume of this prism is $\sqrt{3} \ell^{2} h / 4$. You may find it useful to note that the area of an equilateral triangle of side length ℓ is $\sqrt{3} \ell^{2} / 4$.

a. [4 points] Give the equation of the surface area of this prism, listing units.

Solution: To find the surface area, we must add up the area of all the faces, the two
 centimeters.

$$
\text { Surface area }=\frac{\sqrt{3} / 2 \ell^{2}+3 \ell h \mathbf{c m}^{2}}{}
$$

b. [8 points] If the prism has a fixed volume of $16 \mathrm{~cm}^{3}$, find the values of ℓ and h which minimize the surface area. Clearly justify that you have found the minimum.

Solution: We can proceed in one of two ways; we can either use the formula for volume to solve for h in terms of ℓ or ℓ in terms of h. Since volume is linear in h, it is easier to solve for h in terms of ℓ as $h=64 / \sqrt{3} \ell^{-2}$. When we plug this into the surface area equation, we get

$$
S(\ell)=\frac{\sqrt{3} \ell^{2}}{2}+\frac{3(64)}{\ell \sqrt{3}} .
$$

To find the minimum, we first compute the critical points of this equation:

$$
\begin{aligned}
S^{\prime}(\ell)= & \sqrt{3} \ell-\frac{\sqrt{3}(64)}{\ell^{2}} \\
S^{\prime}(\ell)=0 \Rightarrow & \sqrt{3} \ell-\frac{\sqrt{3}(64)}{\ell^{2}}=0 \\
& \sqrt{3} \ell=\frac{\sqrt{3}(64)}{\ell^{2}} \\
& \ell^{3}=64 \Rightarrow \ell=4 .
\end{aligned}
$$

To see that this critical point is a minimum, consider the second derivative. Since $S^{\prime \prime}(\ell)=$ $\sqrt{3}+\frac{2 \sqrt{3}(64)}{\ell^{3}}>0$ for all all positive ℓ, the function $S(\ell)$ is concave up, and thus $\ell=4$ is the local and global minimum. Therefore, the dimension of the equilateral prism with volume $16 \mathrm{~cm}^{3}$ and minimal surface area is $\ell=4 \mathrm{~cm}$ and $h=4 / \sqrt{3} \mathrm{~cm}$

