4. [10 points] The cable of a suspension bridge with two supports $2 L$ meters apart hangs H meters above the ground. The height H is given in terms of the distance in meters from the first support x (in meters) by the function

$$
H(x)=e^{x-L}+e^{L-x}+H_{0}-2
$$

where H_{0} and L are positive constants. Notice that x ranges from 0 (the first support) to $2 L$ (the second support).
a. [4 points] Find (but do not classify) the critical points for the function $H(x)$.

Solution: To find the critical points, we first take the derivative of $H(x)$:

$$
H^{\prime}(x)=e^{x-L}-e^{L-x} .
$$

To find the critical points, we set $H^{\prime}(x)=0$:

$$
\begin{aligned}
H^{\prime}(x)=0 \Rightarrow & e^{x-L}-e^{L-x}=0 \Rightarrow e^{x-L}=e^{L-x} \\
\text { apply } \ln \text { to both sides } & x-L=L-x \\
& 2 x=2 L \Rightarrow x=L
\end{aligned}
$$

So, $H(x)$ has only one critical point at $x=L$.
b. [6 points] Find the x and y coordinates of all global maxima and minima for the function $H(x)$. Justify your answers.

Solution: Since the values of x lie in the closed interval $[0,2 L]$, to find all global maxima and minima, we need to compare the values of H at the endpoints and at any critical points. From part (a), we know the only critical point is at $x=L$, we plug $x=0, L$, and $2 L$ into $H(x)$:
$H(0)=e^{-L}+e^{L}+H_{0}-2, H(L)=1+1+H_{0}-2=H_{0}$, and $H(2 L)=e^{L}+e^{-L}+H_{0}-2$.
To identify which of these should be larger, we notice that $e^{x}+e^{-x} \geq 2$ for all x. Therefore, $H(2 L)=H(0)>H(L)$. Then, the function $H(x)$ has global maxima at $\left(0, e^{-L}+e^{L}+H_{0}-2\right)$ and $\left(2 L, e^{-L}+e^{L}+H_{0}-2\right)$ and a global minimum at $\left(L, H_{0}\right)$.

