5. [8 points] Each part of this problem has four statements, (i)-(iv). For each part, circle all statements which are always true and draw a line through all other statements. Any ambiguous markings will receive no credit.
a. [4 points] Let $q(t)=A \cos (B t)+C \sin (B t)$, with A, B, and C constants.
(i) $q^{\prime \prime}(t)=-B^{2} q(t)$.
(ii) The function $q(t)$ is coneave down everyhere.
(iii) The $q^{\prime}\left(\frac{\pi}{2 B}\right)$ is $A B$.
(iv) If $q^{\prime}(0)=\pi$ and $C=2$, then $q(t)=q(t+4)$ for all values of t .
b. [4 points] Let $f(x)$ be a function defined on the closed interval [0,4], such that $f^{\prime \prime}(x)>0$ on the entire interval, and $f^{\prime}(x)$ is zero only at $x=3$.
(i) $f(1)>f(4)$.
(ii) $f^{\prime}(1)<f^{\prime}(3)$.
(iii) The pint $(3, f(3))$ is local maximum.
(iv) Either one or both of $f(4)$ and $f(0)$ are a global maximum.
