- 5. [8 points] Each part of this problem has four statements, (i)-(iv). For each part, circle all statements which are always true and draw a line through all other statements. Any ambiguous markings will receive no credit.
 - **a**. [4 points] Let $q(t) = A\cos(Bt) + C\sin(Bt)$, with A, B, and C constants.

(i)
$$q''(t) = -B^2 q(t)$$
.

(ii) The function q(t) is concave down everywhere.

(iii) The value of
$$q'\begin{pmatrix} \pi\\ 2B \end{pmatrix}$$
 is AB .

(iv) If
$$q'(0) = \pi$$
 and $C = 2$, then $q(t) = q(t+4)$ for all values of t

- **b.** [4 points] Let f(x) be a function defined on the closed interval [0, 4], such that f''(x) > 0 on the entire interval, and f'(x) is zero only at x = 3.
 - (i) f(1) > f(4).
 - (ii) f'(1) < f'(3).
 - (iii) The point (3, f(3)) is a local maximum.
 - (iv) Either one or both of f(4) and f(0) are a global maximum.