6. [13 points] Let $f(v)$ be the gas consumption (in liters $/ \mathrm{km}$) of a car going at velocity v (in $\mathrm{km} / \mathrm{hr})$. In other words, $f(v)$ tells you how many liters of gas the car uses to go one kilometer, if it is going at velocity v. You are told that

$$
f(90)=0.08 \text { and } f^{\prime}(90)=0.0008
$$

a. [5 points] Let $g(v)$ be the distance the same car goes on one liter of gas at velocity v. What is the relationship between $f(v)$ and $g(v)$? Find $g(90)$ and $g^{\prime}(90)$.

Solution: The function $f(v)$ is consumption in L / km and $g(v)$ is efficiency in km / L, so the relationship between $f(v)$ and $g(v)$ is

$$
g(v)=1 / f(v)=[f(v)]^{-1} .
$$

This means $g(90)=1 / f(90)=1 / 0.08=12.5 \mathrm{~km} / \mathrm{L}$. The derivative of $g(v)$ is

$$
g^{\prime}(v)=-[f(v)]^{-2} f^{\prime}(v)
$$

so $g^{\prime}(90)=-[f(90)]^{-2} f^{\prime}(90)=-(0.08)^{-2}(0.0008)=-0.125 \mathrm{~km} / \mathrm{L}$ per km / h.
b. [5 points] Let $h(v)$ be the gas consumption in liters per hour. In other words, $h(v)$ tells you how many liters of gas the car uses in one hour if the car is going at velocity v. What is the relationship between $h(v)$ and $f(v)$? Find $h(90)$ and $h^{\prime}(90)$.

Solution: Since $f(v)$ is consumption in L / km and v is velocity in km / h, the function $h(v)$ must be the product of v and $f(v)$, in L / h.

$$
h(v)=v f(v) .
$$

This means $h(90)=90 f(90)=7.2 \mathrm{~L} / \mathrm{h}$. The derivative of $h(v)$ is

$$
h^{\prime}(v)=f(v)+v f^{\prime}(v)
$$

so $h^{\prime}(90)=f(90)+90 f^{\prime}(90)=0.152 \mathrm{~L} / \mathrm{h}$ per km / h.
c. [3 points] How would you explain the practical meaning of $g^{\prime}(90)$ to a driver who knows no calculus?
Solution: The value of $g^{\prime}(90)$ is $-0.125 \mathrm{~km} / \mathrm{L}$ per km / h. In practical terms this means: "When the car increases speed from 90 to $91 \mathrm{~km} / \mathrm{h}$, the fuel efficiency of the car decreases by about $0.125 \mathrm{~km} / \mathrm{L}$. ."

