8. [12 points] The equation $\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y$ describes a two-petaled rose curve.
a. [2 points] Verify that the point $(x, y)=(1,1)$ is on the curve.

Solution: At the point $(x, y)=(1,1)$,

$$
\left(x^{2}+y^{2}\right)^{2}=\left(1^{2}+1^{2}\right)^{2}=4=4(1)^{2}(1)=4 x^{2} y .
$$

b. [7 points] Calculate $d y / d x$ at $(x, y)=(1,1)$.

Solution: Differentiating both sides of the equation for the curve with respect to x we have

$$
2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=4\left(2 x y+x^{2} \frac{d y}{d x}\right) .
$$

At the point $(x, y)=(1,1)$ this equation becomes

$$
2\left(1^{2}+1^{2}\right)\left(2(1)+2(1) \frac{d y}{d x}\right)=4\left(2(1)(1)+(1)^{2} \frac{d y}{d x}\right) .
$$

Simplifying, we have $4\left(2+2 \frac{d y}{d x}\right)=8+4 \frac{d y}{d x}$. This gives us that $\frac{d y}{d x}=0$ at $(x, y)=(1,1)$.
c. [3 points] Find the equation of the tangent line to the rose curve at the point $(x, y)=(1,1)$.
 have that the tangent line to the rose curve at $(x, y)=(1,1)$ is $y=1$.

