9. [12 points] Suppose \(w(x) \) is an everywhere differentiable function which satisfies the following conditions:

- \(w'(0) = 0 \).
- \(w'(x) > 0 \) for \(x > 0 \).
- \(w'(x) < 0 \) for \(x < 0 \).

Let \(f(t) = t^2 + bt + c \) where \(b \) and \(c \) are positive constants with \(b^2 > 4c \). Define \(L(t) = w(f(t)) \).

a. [2 points] Compute \(L'(t) \). Your answer may involve \(w \) and/or \(w' \) and constants \(b \) and \(c \).

Solution: \(L'(t) = w'(t^2 + bt + c) \cdot (2t + b) \).

b. [4 points] Using your answer from (a), find the critical points of \(L(t) \) in terms of the constants \(b \) and \(c \).

Solution: \(L(t) \) has critical points when \(L'(t) = 0 \). This happens only if \(w'(t^2 + bt + c) = 0 \) or if \((2t + b) = 0 \).

\(w'(t^2 + bt + c) = 0 \) means \(t^2 + bt + c = 0 \) by the first property of \(w' \) above. Solving using the quadratic formula, we have

\[t = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2} \]

as critical points of \(L(t) \). Both of these roots exist and are distinct since \(b^2 > 4c \).

If \(2t + b = 0 \), we have \(t = -\frac{b}{2} \) as a critical point. Altogether our critical points are \(t = -\frac{b}{2}, -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2}, -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2} \).

c. [6 points] Classify each critical point you found in (b). Be sure to fully justify your answer.

Solution: For simplicity, let’s set \(p = -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2} \) and \(m = -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2} \).

We know that \(f(t) \) is an upward opening parabola with roots at \(p \) and \(m \). We also know \(p > m \), so this means \(f(t) > 0 \) for \(t < m \) and \(t > p \). This also means \(f(t) < 0 \) for \(m < t < p \). Thus by properties two and three of \(w' \) above we know \(w'(f(t)) > 0 \) for \(t < m \) and \(t > p \), and \(w'(f(t)) < 0 \) for \(m < t < p \).

The expression \(2t + b \) is positive for \(t > -\frac{b}{2} \) and negative for \(t < -\frac{b}{2} \).

Putting all of this information together gives us

\[L'(t) > 0 \]

on the intervals \((m, -\frac{b}{2}) \) and \((p, +\infty)\), and

\[L'(t) < 0 \]

on the intervals \((-\infty, m)\) and \((-\frac{b}{2}, p)\). Thus, by the first derivative test, the critical points \(t = m = -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2} \) and \(t = p = -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2} \) are local minima, and \(t = -\frac{b}{2} \) is a local maximum.