9. [12 points] Suppose $w(x)$ is an everywhere differentiable function which satisfies the following conditions:

- $w^{\prime}(0)=0$.
- $w^{\prime}(x)>0$ for $x>0$.
- $w^{\prime}(x)<0$ for $x<0$.

Let $f(t)=t^{2}+b t+c$ where b and c are positive constants with $b^{2}>4 c$. Define $L(t)=w(f(t))$.
a. [2 points] Compute $L^{\prime}(t)$. Your answer may involve w and/or w^{\prime} and constants b and c.

Solution: $\quad L^{\prime}(t)=w^{\prime}\left(t^{2}+b t+c\right) \cdot(2 t+b)$.
b. [4 points] Using your answer from (a), find the critical points of $L(t)$ in terms of the constants b and c.
Solution: $L(t)$ has critical points when $L^{\prime}(t)=0$. This happens only if $w^{\prime}\left(t^{2}+b t+c\right)=0$ or if $(2 t+b)=0$.
$w^{\prime}\left(t^{2}+b t+c\right)=0$ means $t^{2}+b t+c=0$ by the first property of w^{\prime} above. Solving using the quadratic formula, we have

$$
t=-\frac{b}{2} \pm \frac{\sqrt{b^{2}-4 c}}{2}
$$

as critical points of $L(t)$. Both of these roots exist and are distinct since $b^{2}>4 c$.
If $2 t+b=0$, we have $t=-\frac{b}{2}$ as a critical point. Altogether our critical points are $t=-\frac{b}{2},-\frac{b}{2}+\frac{\sqrt{b^{2}-4 c}}{2},-\frac{b}{2}-\frac{\sqrt{b^{2}-4 c}}{2}$.
c. [6 points] Classify each critical point you found in (b). Be sure to fully justify your answer.

Solution: For simplicity, let's set $p=-\frac{b}{2}+\frac{\sqrt{b^{2}-4 c}}{2}$ and $m=-\frac{b}{2}-\frac{\sqrt{b^{2}-4 c}}{2}$.
We know that $f(t)$ is an upward opening parabola with roots at p and m. We also know $p>m$, so this means $f(t)>0$ for $t<m$ and $t>p$. This also means $f(t)<0$ for $m<t<p$. Thus by properties two and three of w^{\prime} above we know $w^{\prime}(f(t))>0$ for $t<m$ and $t>p$, and $w^{\prime}(f(t))<0$ for $m<t<p$.

The expression $2 t+b$ is positive for $t>-\frac{b}{2}$ and negative for $t<-\frac{b}{2}$.
Putting all of this information together gives us

$$
L^{\prime}(t)>0
$$

on the intervals $\left(m,-\frac{b}{2}\right)$ and $(p,+\infty)$, and

$$
L^{\prime}(t)<0
$$

on the intervals $(-\infty, m)$ and $\left(-\frac{b}{2}, p\right)$. Thus, by the first derivative test, the critical points $t=m=-\frac{b}{2}-\frac{\sqrt{b^{2}-4 c}}{2}$ and $t=p=-\frac{b}{2}+\frac{\sqrt{b^{2}-4 c}}{2}$ are local minima, and $t=-\frac{b}{2}$ is a local maximum.

