- **9.** [12 points] Suppose w(x) is an everywhere differentiable function which satisfies the following conditions:
 - w'(0) = 0.
 - w'(x) > 0 for x > 0.
 - w'(x) < 0 for x < 0.

Let $f(t) = t^2 + bt + c$ where b and c are positive constants with $b^2 > 4c$. Define L(t) = w(f(t)).

- **a**. [2 points] Compute L'(t). Your answer may involve w and/or w' and constants b and c. Solution: $L'(t) = w'(t^2 + bt + c) \cdot (2t + b)$.
- **b.** [4 points] Using your answer from (a), find the critical points of L(t) in terms of the constants b and c.

Solution: L(t) has critical points when L'(t) = 0. This happens only if $w'(t^2 + bt + c) = 0$ or if (2t + b) = 0.

 $w^\prime(t^2+bt+c)=0$ means $t^2+bt+c=0$ by the first property of w^\prime above. Solving using the quadratic formula, we have

$$t = -\frac{b}{2} \pm \frac{\sqrt{b^2 - 4c}}{2}$$

as critical points of L(t). Both of these roots exist and are distinct since $b^2 > 4c$. If 2t + b = 0, we have $t = -\frac{b}{2}$ as a critical point. Altogether our critical points are $t = -\frac{b}{2}, -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2}, -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2}$.

c. [6 points] Classify each critical point you found in (b). Be sure to fully justify your answer.

Solution: For simplicity, let's set
$$p = -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2}$$
 and $m = -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2}$

We know that f(t) is an upward opening parabola with roots at p and m. We also know p > m, so this means f(t) > 0 for t < m and t > p. This also means f(t) < 0 for m < t < p. Thus by properties two and three of w' above we know w'(f(t)) > 0 for t < m and t > p, and w'(f(t)) < 0 for m < t < p.

The expression 2t + b is positive for $t > -\frac{b}{2}$ and negative for $t < -\frac{b}{2}$.

Putting all of this information together gives us

L'(t) > 0

on the intervals $(m, -\frac{b}{2})$ and $(p, +\infty)$, and

L'(t) < 0

on the intervals $(-\infty, m)$ and $(-\frac{b}{2}, p)$. Thus, by the first derivative test, the critical points $t = m = -\frac{b}{2} - \frac{\sqrt{b^2 - 4c}}{2}$ and $t = p = -\frac{b}{2} + \frac{\sqrt{b^2 - 4c}}{2}$ are local minima, and $t = -\frac{b}{2}$ is a local maximum.