5. [14 points] The function f is has a continuous second derivative on the interval $10 \leq x \leq 19$. Some values of its derivative function f^{\prime} are given in the table below.

x	10	11	12	13	14	15	16	17	18	19
$f^{\prime}(x)$	-34	-3	-1	-2	-3	31	62	70	66	37

a. [4 points] f has exactly one inflection point on the interval $15 \leq x \leq 19$. Given the information provided, give the smallest x interval on which this inflection point is guaranteed to lie, making it clear whether your endpoints are included.
b. [8 points] f has exactly four critical points, with x-values $11.2,11.7,12.6$, and 14.2, respectively. Classify each point as a local minimum, a local maximum, or neither, given that f has either a local maximum or a local minimum at $x=11.2$. For each point below, circle only one option.

At $x=11.2, f$ has	a local maximum	a local minimum	
At $x=11.7, f$ has	a local maximum	a local minimum	neither
At $x=12.6, f$ has	a local maximum	a local minimum	neither
At $x=14.2, f$ has	a local maximum	a local minimum	neither

c. [2 points] Is there at least one inflection point on the interval $11<x<12$? (Circle one.)

Yes
No
Not possible to determine

