1. [12 points] The following questions relate to the implicit curve $2 x^{2}+4 x-x^{2} y^{2}+3 y^{4}=-1$.
a. [6 points] Calculate $\frac{d y}{d x}$.

Solution: Differentiating both sides with respect to x, we get

$$
4 x+4-2 x y^{2}-2 x^{2} y \frac{d y}{d x}+12 y^{3} \frac{d y}{d x}=0 .
$$

Moving all terms with no $\frac{d y}{d x}$ to the other side and factoring out $\frac{d y}{d x}$ gives us

$$
\frac{d y}{d x}\left(12 y^{3}-2 x^{2} y\right)=2 x y^{2}-4 x-4 .
$$

So

$$
\frac{d y}{d x}=\frac{2 x y^{2}-4 x-4}{12 y^{3}-2 x^{2} y}=\frac{x y^{2}-2 x-2}{6 y^{3}-x^{2} y} .
$$

b. [2 points] Q is the only point on the curve that has a y-coordinate of 1 . Find the x-coordinate of Q.
Solution: Plugging $y=1$ into the equation for the curve gives us

$$
2 x^{2}+4 x-x^{2}+3=-1
$$

Moving all the terms to the left, we get

$$
x^{2}+4 x+4=0 .
$$

This factors as $(x+2)^{2}=0$, so $x=-2$.
c. [4 points] Find the equation of the tangent line to the curve at Q.

Solution: To find the slope, we plug in $x=-2$ and $y=1$ to $\frac{d y}{d x}$.

$$
\text { slope }=\frac{-2+4-2}{6-4}=0 .
$$

Thus, the tangent line is the horizontal line passing through Q, which has equation $y=1$.

