4. [13 points] Let $f(x)=e^{\sin \sqrt{x}}$. Let P be the point on the graph of f at which $x=4 \pi^{2}(\approx$ 39.4784).
a. [3 points] Calculate $f^{\prime}(x)$.

Solution:

$$
f^{\prime}(x)=\left(e^{\sin \sqrt{x}}\right)(\cos \sqrt{x})\left(\frac{1}{2} x^{-1 / 2}\right)=\frac{e^{\sin \sqrt{x}} \cos \sqrt{x}}{2 \sqrt{x}}
$$

b. [4 points] Find an exact formula for the tangent line $L(x)$ to $f(x)$ at P. Exact means your answer should not involve any decimal approximations.
Solution:

$$
\text { slope }=f^{\prime}\left(4 \pi^{2}\right)=\frac{e^{\sin (2 \pi)} \cos (2 \pi)}{2 \cdot 2 \pi}=\frac{1}{4 \pi},
$$

so $L(x)=\frac{x}{4 \pi}+b$, where b is the vertical intercept. When $f\left(4 \pi^{2}\right)=e^{\sin (2 \pi)}=1$, so $1=\frac{4 \pi^{2}}{4 \pi}+b$, which gives us $b=1-\pi$, so

$$
L(x)=\frac{x}{4 \pi}+1-\pi
$$

c. [2 points] Use your formula for $L(x)$ to approximate $e^{\sin \sqrt{38}}$.

Solution:

$$
e^{\sin \sqrt{38}}=f(38) \approx L(38)=\frac{38}{4 \pi}+1-\pi \approx 0.8824
$$

d. [4 points] Recall that the error, $E(x)$, is the actual value of the function minus the value approximated by the tangent line. Given the fact that in this case $E(39) \approx 0.000613$ and $E(40) \approx 0.000719$, would you expect $f^{\prime \prime}\left(4 \pi^{2}\right)$ to be positive or negative? Explain, without doing any calculations.
Solution: The errors are positive, which means that near P the tangent line lies below the curve, so the function is probably concave up at P. Since concave up corresponds to positive second derivative, we should expect the sign of $f^{\prime \prime}\left(4 \pi^{2}\right)$ to be positive.

