8. [13 points] Two smokestacks d miles apart deposit soot on the ground between them. The concentration of the combined soot deposits on the line joining them, at a distance x from one stack, is given by

$$
S=\frac{c}{x^{2}}+\frac{k}{(d-x)^{2}}
$$

where c and k are positive constants which depend on the quantity of smoke each stack is emitting. If $k=27 c$, find the x-value of the point on the line joining the stacks where the concentration of the deposit is a minimum. Justify that the point you found is actually a global minimum.
Solution: First we plug in $k=27 c$ and get

$$
S=\frac{c}{x^{2}}+\frac{27 c}{(d-x)^{2}} .
$$

Then we take the derivative and set it equal to zero to find the critical points on the domain $0<x<d$:

$$
S^{\prime}=\frac{-2 c}{x^{3}}+\frac{(-2)(27 c)(-1)}{(d-x)^{3}}=\frac{-2 c}{x^{3}}+\frac{2 \cdot 27 c}{(d-x)^{3}}=0
$$

Now we solve for x :

$$
\begin{aligned}
& \frac{2 \cdot 27 c}{(d-x)^{3}}=\frac{2 c}{x^{3}} \\
& \frac{27}{(d-x)^{3}}=\frac{1}{x^{3}}
\end{aligned}
$$

Taking the cube root of both sides gives $\frac{3}{d-x}=\frac{1}{x}$. So $3 x=d-x$. Thus $x=\frac{d}{4}$.
Now our domain is $(0, d)$ and $x=\frac{d}{4}$ is our only critical point. As $x \rightarrow 0, S \rightarrow \infty$, and as $x \rightarrow d, S \rightarrow \infty$. Thus, our global minimum must be at our sole critical point at $x=\frac{d}{4}$.

