7. [14 points] The table of values below gives information about the first and second derivatives of a function f(x).

x	-3	-2	-1	0	1	2	3
f'(x)	-2	0	-1	0	2	0	-2
f''(x)	2	0	0	0	0	-2	-1

Assume that f''(x) is **continuous** on [-3,3] and that the values of f'(x) and f''(x) are either **strictly positive** or **strictly negative** between consecutive table entries. You do not need to show work or give an explanation for this problem, but any unclear answers will be marked as incorrect.

- **a.** [4 points] On which of the following intervals is f''(x) < 0? Circle ALL correct answers.
- -3 < x < -2 -2 < x < -1 -1 < x < 0 0 < x < 1 1 < x < 2 2 < x < 3
- **b.** [10 points] For each of the following x values, circle ALL answers that apply. If none of the choices apply, don't circle anything.

At $x = -2$, f has a	local maximum	local minimum	inflection point
At $x = -1$, f has a	local maximum	local minimum	inflection point
At $x = 0$, f has a	local maximum	local minimum	inflection point
At $x = 1$, f has a	local maximum	local minimum	inflection point
At $x = 2$, f has a	local maximum	local minimum	inflection point