2. [6 points] Given the implicit curve \(y^2 = \cos(xy) - 3x \), find \(\frac{dy}{dx} \).

Solution: Using implicit differentiation, we get

\[
2y \frac{dy}{dx} = -\sin(xy) \left(y + x \frac{dy}{dx} \right) - 3
\]

Solving for \(\frac{dy}{dx} \) gives

\[
2y \frac{dy}{dx} = -y \sin(xy) - x \sin(xy) \frac{dy}{dx} - 3
\]

\[
2y \frac{dy}{dx} + x \sin(xy) \frac{dy}{dx} = -y \sin(xy) - 3
\]

\[
\frac{dy}{dx} = \frac{-y \sin(xy) - 3}{2y + x \sin(xy)}
\]

3. [9 points] This problem concerns the function \(f(x) = -x - 3e^{4x} \).

a. [3 points] Show that the function \(f \) is invertible.

Solution: We have \(f'(x) = -1 - 12e^{-4x} \) which is negative for all values of \(x \). This means that \(f \) is a strictly decreasing function. Since \(f \) is strictly decreasing, it never takes the same value twice so \(f \) is invertible.

b. [2 points] Find \(f^{-1}(-3) \). You do not need to show any work.

Solution: \(f^{-1}(-3) = 0 \) because \(f(0) = -3 \).

c. [4 points] Evaluate \((f^{-1})'(-3) \). Show all of your work.

Solution: Using the formula for the derivative of an inverse function, we get

\[
(f^{-1})'(-3) = \frac{1}{f'(f^{-1}(-3))} = \frac{1}{f'(0)}
\]

Since \(f'(x) = -1 - 12e^{-4x} \) we have \(f'(0) = -13 \) and so

\[
(f^{-1})'(-3) = \frac{1}{13}
\]