4. [17 points] The function g(x) is continuous on the interval 0 < x < 8. The graph of g'(x), the **derivative** of g(x), is shown below.

a. [6 points] List the x-coordinates of the critical points of the function g(x) and state whether each is a local maximum, local minimum, or neither. You do not need to justify your answers.

Solution:	x = 0.5	x = 3	x = 4	x = 6
	local minimum	local maximum	local minimum	neither

b. [3 points] List the x-coordinates of the inflection points of the function g(x). You do not need to justify your answers.

Solution: x = 2, x = 6

c. [3 points] Suppose that g(1) = 8. Write an equation for the best linear approximation to g(x) at x = 1.

$$g(x) \approx \underline{\qquad \qquad 10(x-1)+8}$$

d. [2 points] Use your approximation from part (c) to estimate g(1.05). Solution: $g(1.05) \approx 10(1.05 - 1) + 8 = 8.5$

e. [3 points] Is your estimate for g(1.05) an overestimate or an underestimate? Explain.

Solution: We see from the graph that g'(x) is increasing at x = 1, so g(x) is concave up at x = 1. Because the graph of g(x) is concave up at x = 1, the tangent line is below the curve so our estimate is an underestimate.