5. [6 points] For each of the following statements, circle True if the statement is always true and circle False otherwise. No justification is necessary.

a. [2 points] If the function \(f(x) \) is continuous on the interval \((0, 100)\), then \(f(x) \) has a global maximum and a global minimum on that interval.

 True \hspace{1cm} False

b. [2 points] If \(f(x) \) is a differentiable function with a critical point at \(x = c \), then the function \(g(x) = e^{f(x)} \) also has a critical point at \(x = c \).

 True \hspace{1cm} False

c. [2 points] If \(f'(x) \) is continuous and \(f'(x) \neq 0 \) for all \(x \), then \(f(0) \neq f(5) \).

 True \hspace{1cm} False

6. [8 points] This problem concerns the implicit curve
\[
x^2 + xy + y^2 = 7
\]
for which
\[
\frac{dy}{dx} = \frac{-y - 2x}{x + 2y}.
\]

a. [3 points] Find an equation for the tangent line to the curve at the point \((1, 2)\).

 Solution: \[
 \left. \frac{dy}{dx} \right|_{(1,2)} = \frac{-2 - 2(1)}{1 + 2(2)} = -\frac{4}{5}
 \]
 So the tangent line at \((1, 2)\) is \[y = -\frac{4}{5}(x - 1) + 2\].

b. [5 points] Find the \(x \)- and \(y \)-coordinates of all points on the curve at which the tangent line is vertical.

 Solution: If the tangent line is vertical, the slope will be undefined. The derivative \(\frac{dy}{dx} \) is undefined when \(x + 2y = 0 \) which means \(x = -2y \). Plugging this into the equation for the curve, we get
\[
(-2y)^2 + (-2y)y + y^2 = 7
\]
\[
y^2 = \frac{7}{3}
\]
\[
y = \pm \sqrt{\frac{7}{3}}
\]
Since \(x = -2y \) this gives two points \((2\sqrt{\frac{7}{3}}, -\sqrt{\frac{7}{3}})\) and \((-2\sqrt{\frac{7}{3}}, \sqrt{\frac{7}{3}})\).