5. [6 points] For each of the following statements, circle True if the statement is always true and circle False otherwise. No justification is necessary.
a. [2 points] If the function $f(x)$ is continuous on the interval $(0,100)$, then $f(x)$ has a global maximum and a global minimum on that interval.

True

b. [2 points] If $f(x)$ is a differentiable function with a critical point at $x=c$, then the function $g(x)=e^{f(x)}$ also has a critical point at $x=c$.

True False
c. [2 points] If $f^{\prime}(x)$ is continuous and $f^{\prime}(x) \neq 0$ for all x, then $f(0) \neq f(5)$.

True False
6. [8 points] This problem concerns the implicit curve

$$
x^{2}+x y+y^{2}=7
$$

for which

$$
\frac{d y}{d x}=\frac{-y-2 x}{x+2 y} .
$$

a. [3 points] Find an equation for the tangent line to the curve at the point $(1,2)$.

Solution:

$$
\left.\frac{d y}{d x}\right|_{(1,2)}=\frac{-2-2(1)}{1+2(2)}=-\frac{4}{5}
$$

So the tangent line at $(1,2)$ is $y=-\frac{4}{5}(x-1)+2$.
b. [5 points] Find the x - and y-coordinates of all points on the curve at which the tangent line is vertical.
Solution: If the tangent line is vertical, the slope will be undefined. The derivative $\frac{d y}{d x}$ is undefined when $x+2 y=0$ which means $x=-2 y$. Plugging this into the equation for the curve, we get

$$
\begin{aligned}
(-2 y)^{2}+(-2 y) y+y^{2} & =7 \\
y^{2} & =\frac{7}{3} \\
y & = \pm \sqrt{\frac{7}{3}}
\end{aligned}
$$

Since $x=-2 y$ this gives two points $\left(2 \sqrt{\frac{7}{3}},-\sqrt{\frac{7}{3}}\right)$ and $\left(-2 \sqrt{\frac{7}{3}}, \sqrt{\frac{7}{3}}\right)$.

