7. [14 points] The table of values below gives information about the first and second derivatives of a function $f(x)$.

x	-3	-2	-1	0	1	2	3
$f^{\prime}(x)$	-2	0	-1	0	2	0	-2
$f^{\prime \prime}(x)$	2	0	0	0	0	-2	-1

Assume that $f^{\prime \prime}(x)$ is continuous on $[-3,3]$ and that the values of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are either strictly positive or strictly negative between consecutive table entries. You do not need to show work or give an explanation for this problem, but any unclear answers will be marked as incorrect.
a. [4 points] On which of the following intervals is $f^{\prime \prime}(x)<0$? Circle ALL correct answers.
$-3<x<-2 \quad-2<x<-1 \quad-1<x<0 \quad 0<x<1 \quad 1<x<2 \quad 1<x<3$
b. [10 points] For each of the following x values, circle ALL answers that apply. If none of the choices apply, don't circle anything.

At $x=-2, f$ has a local maximum local minimum

At $x=-1, f$ has a local maximum local minimum \quad inflection point

At $x=0, f$ has a local maximum local minimum inflection point

At $x=1, f$ has a local maximum local minimum \quad inflection point

At $x=2, f$ has a local maximum local minimum inflection point

