8. [12 points] For Thanksgiving, Bert is trying to make a festive feast table using fall-colored cloth and other accessories. The cloth costs $\$ 0.25$ per square foot and the accessories are $\$ 0.50$ each. He decides the impact of the festive table, I, is a function of the number of square feet of cloth, c, that he uses and the number of accessories, a, that he uses. This relationship is given by

$$
I=c\left(\frac{1}{2} a-3\right)^{2} .
$$

Bert has a total budget of $\$ 9$ for the cloth and accessories.
a. [2 points] Write an equation which expresses that the total cost of the cloth plus the accessories for the festive table is $\$ 9$.
Solution:

$$
0.25 c+0.5 a=9
$$

b. [10 points] Use your answer from (a) to find the maximum impact of the festive table that is possible for $\$ 9$, as well as how many accessories and how much cloth is needed to achieve the maximum impact. Be sure to show your answer is indeed the maximum.
Solution: From part (a) we get

$$
a=18-0.5 c
$$

Plugging this into the formula for impact gives

$$
I=c\left(\frac{1}{2}(18-0.5 c)-3\right)^{2}=c\left(6-\frac{1}{4} c\right)^{2}
$$

We need to maximize I on the domain $0 \leq c \leq 36$. Taking the derivative with respect to c gives

$$
\frac{d I}{d c}=\left(6-\frac{1}{4} c\right)^{2}+c\left(2\left(6-\frac{1}{4} c\right)\left(-\frac{1}{4}\right)\right)=\left(6-\frac{1}{4} c\right)\left(6-\frac{3}{4} c\right)
$$

Then $\frac{d I}{d c}=0$ when $c=24$ or $c=8$. We test the critical points and the endpoints:

$$
\begin{array}{ll}
c=0 & \\
I=0 \\
c=8 & I=128 \\
c=24 & I=0 \\
c=36 & \\
I=324
\end{array}
$$

and find the the maximum impact $I=324$ occurs if $c=36$. Using $a=18-0.5 c$ we find that $a=0$ at this point.

$$
\text { maximum impact: } \begin{aligned}
& =\frac{324}{36} \\
c & =\frac{36}{} \\
a & =\frac{0}{}
\end{aligned}
$$

