9. [13 points] Consider the function

$$
f(x)=a x \ln x-b x
$$

with domain $x>0$, where a and b are positive constants. Note that this function has exactly one critical point.
a. [3 points] Find $f^{\prime}(x)$.

Solution:

$$
f^{\prime}(x)=a\left((1) \ln x+x \frac{1}{x}\right)-b=a \ln x+a-b
$$

b. [4 points] For which values of a and b does $f(x)$ have a critical point at $(e,-2)$?

Solution: We want $f^{\prime}(e)=0$ and $f(e)=-2$. We plug $x=e$ into $f^{\prime}(x)$ to get

$$
f^{\prime}(e)=a \ln e+a-b=2 a-b=0
$$

which tells us that $2 a=b$. Plugging $x=e$ into $f(x)$ gives

$$
f(e)=a e \ln e-b e=(a-b) e=-2 .
$$

Using $2 a=b$, we get

$$
(a-(2 a)) e=-2
$$

so that $a=2 / e$. Since $b=2 a$, we get $b=4 / e$.
c. [3 points] Using your values of a and b from part (b), is the critical point from (b) a local maximum, local minimum, or neither? Justify your answer.

Solution: The second derivative of $f(x)$ is $f^{\prime \prime}(x)=a / x=(4 / e) / x$. Then $f^{\prime \prime}(e)=$ $4 / e^{2}>0$ so the graph of $f(x)$ is concave up at $x=e$. This means that $f(x)$ has a local minimum at $x=e$.
d. [3 points] Using your values of a and b from part (b), find the x-coordinates of any inflection points of $f(x)$ or show that $f(x)$ has no inflection points.

Solution: The second derivative of $f(x)$ is $f^{\prime \prime}(x)=a / x=(4 / e) / x$. This is continuous and positive for all values of x in the domain $x>0$ of $f(x)$. Since the second derivative never changes sign, $f(x)$ has no inflection points.

