9. [13 points] Consider the function

\[f(x) = ax \ln x - bx \]

with domain \(x > 0 \), where \(a \) and \(b \) are positive constants. Note that this function has exactly one critical point.

a. [3 points] Find \(f'(x) \).

\[f'(x) = a \left(1 + \frac{1}{x} \right) - b = a \ln x + a - b \]

Solution:

b. [4 points] For which values of \(a \) and \(b \) does \(f(x) \) have a critical point at \((e, -2)\)?

\[f'(e) = a \ln e + a - b = 2a - b = 0 \]

\[f(e) = a e \ln e - be = (a - b)e = -2 \]

Using \(2a = b \), we get \((a - 2a)e = -2 \) so that \(a = 2/e \). Since \(b = 2a \), we get \(b = 4/e \).

Solution:

The second derivative of \(f(x) \) is \(f''(x) = a/x = (4/e)/x \). Then \(f''(e) = 4/e^2 > 0 \) so the graph of \(f(x) \) is concave up at \(x = e \). This means that \(f(x) \) has a local minimum at \(x = e \).

Solution:

The second derivative of \(f(x) \) is \(f''(x) = a/x = (4/e)/x \). This is continuous and positive for all values of \(x \) in the domain \(x > 0 \) of \(f(x) \). Since the second derivative never changes sign, \(f(x) \) has no inflection points.