4. [12 points] Researchers are constructing a rectangular garden adjacent to their building. The garden will be bounded by the building on one side and by a fence on the other three sides. (See diagram below.) The fencing will cost them $\$ 5$ per linear foot. In addition, they will also need topsoil to cover the entire area of the garden. The topsoil will cost $\$ 4$ per square foot of the garden's area.
Assume the building is wider than any garden the researchers could afford to build.

a. [5 points] Suppose the garden is w feet wide and extends h feet from the building, as shown in the diagram above. Assume it costs the researchers a total of $\$ 250$ for the fencing and topsoil to construct this garden. Find a formula for w in terms of h.

Answer: $w=$

\qquad
b. [3 points] Let $A(h)$ be the total area (in square feet) of the garden if it costs $\$ 250$ and extends h feet from the building, as shown above. Find a formula for the function $A(h)$. The variable w should not appear in your answer.
(Note that $A(h)$ is the function one would use to find the value of h maximizing the area. You should not do the optimization in this case.)

Answer: $\quad A(h)=$ \qquad
c. [4 points] In the context of this problem, what is the domain of $A(h)$?

Answer:

