1. [5 points] Let $h(x)$ be a differentiable function such that $h^{\prime}(x)$ is also differentiable everywhere. Suppose that $h(3)=9, h^{\prime}(3)=2$, and $h^{\prime \prime}(x)>0$ for all real numbers x.
a. [2 points] Let $L(x)$ be the local linearization of $h(x)$ at $x=3$. Find a formula for $L(x)$.

Solution: The graph of $L(x)$ is the tangent line to the graph of $y=h(x)$ at $x=3$. This is a line of slope 2 passing through the point $(3,9)$. So $L(x)=9+2(x-3)$.

Answer: $\quad L(x)=$ $9+2(x-3)$
b. [3 points] Which of the following equalities could be true?

Circle all the statements that could be true or circle NONE OF THESE.
You do not need to explain your reasoning.
Solution: Since $h^{\prime \prime}(x)>0$ for all x, the graph of $h(x)$ is concave up so lies above the graph of $L(x)$. Therefore, $h(-1)>L(-1)=9+2(-4)=1$.

$$
\begin{aligned}
& h(-1)=-1 \\
& h(-1)=0 \\
& h(-1)=1 \\
& h(-1)=2
\end{aligned}
$$

NONE OF THESE

