10. [8 points] You are not required to show your work on this page.
a. [2 points] Circle the one option that correctly fills in the blank.

The local linearization of $B(x)=e^{x^{2}}$ at $x=5$ is given by $L(x)=$ \qquad .

$$
\begin{array}{lll}
e^{25}+\left(2 x e^{x^{2}}\right)(x-5) & e^{x^{2}}+\left(2 x e^{x^{2}}\right)(x-5) & 2 e^{25} x-5 \\
B^{\prime}(a)(x-a)+B(x) & e^{25}(10 x-49) & e^{x^{2}}+\left(10 e^{25}\right)(x-5)
\end{array}
$$

b. [3 points] Suppose $g(x)$ is a function such that $g^{\prime \prime}(x)$ exists for all real numbers x. Suppose further that $g^{\prime}(x)$ (the derivative of $\left.g(x)\right)$ has a critical point at $x=2$.
Circle all the statements below that must be true or circle NONE OF THESE.

$$
g(x) \text { has a local extremum at } x=2 .
$$

$$
g(x) \text { has an inflection point at } x=2 .
$$

$$
g^{\prime}(2)=0 .
$$

$$
g^{\prime \prime}(2)=0
$$

NONE OF THESE
c. [3 points] Let $f(x)$ be a differentiable function such that for all real numbers $x, f(x)<0$ and $f^{\prime}(x)<0$. Let $j(x)=f(f(x))$.
Circle all the statements below that must be true or circle none of these.

$$
\begin{aligned}
& j(x)>0 \text { for all } x . \\
& j(x)<0 \text { for all } x . \\
& j^{\prime}(x)>0 \text { for all } x .
\end{aligned}
$$

$$
j^{\prime}(x)<0 \text { for all } x .
$$

$$
j(x) \text { has no local extrema. }
$$

