5. [12 points] Let $f(x)$ be a differentiable function defined for all real x with derivative

$$
f^{\prime}(x)=\left(e^{x-1}\right) x^{4}(x+4)(x-3)^{2} .
$$

a. [3 points] Find the x-coordinates of all critical points of $f(x)$.

Solution: Critical points of $f(x)$ occur where $f^{\prime}(x)$ is zero or undefined. Since we are given a formula for $f^{\prime}(x)$ that is defined everywhere, $f^{\prime}(x)$ is defined for all real numbers x. So the only critical points of $f(x)$ occur where $f^{\prime}(x)=0$, i.e. at $x=0,-4,3$.

Answer: critical point(s) at $x=$ $0,-4,3$
b. [6 points] Find the x-coordinates of all local extrema of $f(x)$. If there are none of a particular type, write NONE.
Justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.
Solution: All local extrema occur at critical points. Since f is continuous, we use the First Derivative test to classify the critical points from part (a) as local minima, local maxima, or neither.
We determine the sign of $f^{\prime}(x)$ for $x<-4,-4<x<0,0<x<3$, and $x>3$. On each of these intervals, e^{x-1}, x^{4} and $(x-3)^{2}$ are positive. Thus, the sign of $f^{\prime}(x)$ is determined by $(x+4)$, which is positive for $x>-4$ and negative for $x<-4$. Thus,

$$
\begin{array}{c|c|c|c|c}
\text { Interval } & x<-4 & -4<x<0 & 0<x<3 & x>3 \\
\hline \text { Sign of } f^{\prime}(x) & - & + & + & +
\end{array}
$$

By the First Derivative Test, $f(x)$ has a local minimum at $x=-4$. No other critical points are local extrema.

Answer: local min(s) at $x=$
Answer: local max(es) at $x=$ \qquad
c. [3 points] Suppose $f(1)=-7$. Use the tangent line approximation to $f(x)$ at $x=1$ to estimate $f(1.1)$.
Solution: To find the tangent line approximation of $f(x)$ at $x=1$, we first calculate

$$
f^{\prime}(1)=e^{(1-1)}\left(1^{4}\right)(1+4)(1-3)^{2}=20 .
$$

Thus, $f(1.1) \approx f(1)+f^{\prime}(1)(1.1-1)=-7+(20)(0.1)=-5$.

