6. [11 points] Consider the curve $\mathcal{C}$ defined by

$$
e^{x y}=4 x-y^{2}+2 .
$$

a. [6 points] For this curve $\mathcal{C}$, find a formula for $\frac{d y}{d x}$ in terms of $x$ and $y$.

Solution: Applying $\frac{d}{d x}$ to both sides of the equation for the curve, we have

$$
e^{x y}\left(x \frac{d y}{d x}+y(1)\right)=4-2 y \frac{d y}{d x} .
$$

Collecting all terms involving $\frac{d y}{d x}$ to the left hand side and factoring out $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}\left(x e^{x y}+2 y\right)=4-y e^{x y}
$$

Thus, $\frac{d y}{d x}=\frac{4-y e^{x y}}{x e^{x y}+2 y}$.
Answer: $\frac{d y}{d x}=\square \frac{\frac{4-y e^{x y}}{x e^{x y}+2 y}}{\square}$
b. [2 points] Exactly one of the points below lies on the curve $\mathcal{C}$. Circle that one point.

$$
\begin{equation*}
(1,-2) \tag{1,1}
\end{equation*}
$$

$$
\begin{equation*}
(0,-1) \tag{2,0}
\end{equation*}
$$

c. [3 points] Find an equation for the tangent line to the curve $\mathcal{C}$ at the point you chose in part (b).
Solution: The slope of the tangent line to $\mathcal{C}$ at $(0,-1)$ is given by plugging $x=0$ and $y=-1$ into the formula we found for $\frac{d y}{d x}$, which gives

$$
\frac{4-(-1) e^{(0)(-1)}}{0 e^{(0)(-1)}+2(-1)}=-\frac{5}{2}
$$

Thus, the tangent line is given by the equation

$$
y=-1-\frac{5}{2}(x-0) .
$$

Answer: $y=$

$$
-1-\frac{5}{2} x
$$

