6. [11 points] Consider the curve C defined by

$$e^{xy} = 4x - y^2 + 2.$$

a. [6 points] For this curve C, find a formula for $\frac{dy}{dx}$ in terms of x and y.

Solution: Applying $\frac{d}{dx}$ to both sides of the equation for the curve, we have $e^{xy}\left(x\frac{dy}{dx}+y(1)\right) = 4-2y\frac{dy}{dx}$. Collecting all terms involving $\frac{dy}{dx}$ to the left hand side and factoring out $\frac{dy}{dx}$ gives $\frac{dy}{dx}\left(xe^{xy}+2y\right) = 4-ye^{xy}$. Thus, $\frac{dy}{dx} = \frac{4-ye^{xy}}{xe^{xy}+2y}$.

Answer:
$$\frac{dy}{dx} =$$
 $\frac{4 - ye^{xy}}{xe^{xy} + 2y}$

b. [2 points] Exactly one of the points below lies on the curve \mathcal{C} . Circle that one point.

(2,0) (1,-2) (1,1) (0,-1)

c. [3 points] Find an equation for the tangent line to the curve C at the point you chose in part (b).

Solution: The slope of the tangent line to C at (0,-1) is given by plugging x = 0 and y = -1 into the formula we found for $\frac{dy}{dx}$, which gives $\frac{4 - (-1)e^{(0)(-1)}}{0e^{(0)(-1)} + 2(-1)} = -\frac{5}{2}.$ Thus, the tangent line is given by the equation $y = -1 - \frac{5}{2}(x - 0).$

Answer: y =