1. [12 points] The graphs of two functions, $h(p)$ and $v(p)$, are shown below.

The following questions concern the functions B, W, and Q defined as follows:

$$
B(p)=\frac{h(2 p)}{h(4 p)}, \quad W(p)=h(h(p)), \quad \text { and } \quad Q(p)=e^{-v(p)} .
$$

Assume that the first and second derivatives of $v(p)$ are defined everywhere, i.e. that both v and v^{\prime} are differentiable on $(-\infty, \infty)$. Note that the graph of $h(p)$ consists of line segments whose endpoints have integer (whole number) coordinates. Find the exact value of each of the quantities in \mathbf{a}. and \mathbf{b}. below. If the value does not exist, write does not exist.
Remember to show your work carefully.
a. [4 points] $B^{\prime}(-1)$

Answer: $\quad B^{\prime}(-1)=$ \qquad
b. [4 points] $W^{\prime}(2)$

Answer: $\quad W^{\prime}(2)=$ \qquad
c. [4 points] On the interval $-2<p<2$, is $Q(p)$ always increasing, always decreasing, or neither? Show your work and explain your reasoning.

