1. [12 points] The graphs of two functions, h(p) and v(p), are shown below.

The following questions concern the functions B, W, and Q defined as follows:

$$B(p) = \frac{h(2p)}{h(4p)},$$
 $W(p) = h(h(p)),$ and $Q(p) = e^{-v(p)}.$

Assume that the first and second derivatives of v(p) are defined everywhere, i.e. that both v and v' are differentiable on $(-\infty, \infty)$. Note that the graph of h(p) consists of line segments whose endpoints have integer (whole number) coordinates. Find the <u>exact</u> value of each of the quantities in **a.** and **b.** below. If the value does not exist, write DOES NOT EXIST. Remember to show your work carefully.

a. [4 points] B'(-1)

Answer: B'(-1) = _____

b. [4 points] W'(2)

Answer: W'(2) = _____

c. [4 points] On the interval -2 , is <math>Q(p) always increasing, always decreasing, or neither? Show your work and explain your reasoning.