3. [11 points] For each of the problems below, circle <u>all</u> of the correct answers. If none of the answer choices provided are correct, circle NONE OF THESE.

a. [4 points] Let
$$s(t) = \begin{cases} t^3 + 8t^2 + 6t & \text{if } t \le c \\ 4t^2 + 2t & \text{if } t > c \end{cases}$$

For which of the following values of c is s(t) differentiable on $(-\infty, \infty)$?

i. -2ii. $-\frac{2}{3}$ iii. 0 iv. $\frac{3}{2}$ v. 3 vi. NONE OF THESE

b. [4 points] Suppose f and f' are differentiable for all real numbers. Let L(x) be the local linearization of f at x = 3. Suppose f'(x) < 0 for all 2.5 < x < 3.5 and f''(x) > 0 for all 2.5 < x < 3.5. Which of the following must be true?

i. $L(3) > f(3)$	iv. $L(3.1) > f(3.1)$	vii. $L(3.9) > f(3.9)$
ii. $L(3) = f(3)$	v. $L(3.1) = f(3.1)$	viii. $L(3.9) = f(3.9)$
iii. $L(3) < f(3)$	vi. $L(3.1) < f(3.1)$	ix. $L(3.9) < f(3.9)$
	x. NONE OF THESE	

- c. [3 points] Suppose that f is a differentiable function on $(-\infty, \infty)$ with no critical points, that both f and f' are invertible, and that f(4) = 7. Which of the following statements must be true?
 - i. f is an increasing function.v. $(f')^{-1}(4) = \frac{1}{(f^{-1})'(7)}$.ii. f is a decreasing function.vi. $(f')^{-1}(7) = \frac{1}{(f^{-1})'(4)}$.iii. $f'(4) = \frac{1}{f^{-1}(7)}$.vii. $(f')^{-1}(7) = \frac{1}{(f^{-1})'(4)}$.iv. $f'(4) = \frac{1}{(f^{-1})'(7)}$.viii. $(f'(7))^{-1} = (f^{-1})'(7)$.

ix. NONE OF THESE