3. [11 points] For each of the problems below, circle all of the correct answers. If none of the answer choices provided are correct, circle NONE OF THESE.
a. [4 points] Let $s(t)= \begin{cases}t^{3}+8 t^{2}+6 t & \text { if } t \leq c \\ 4 t^{2}+2 t & \text { if } t>c\end{cases}$

For which of the following values of c is $s(t)$ differentiable on $(-\infty, \infty)$?
i. -2
ii. $-\frac{2}{3}$
iii. 0
iv. $\frac{3}{2}$
v. 3
vi. NONE OF THESE
b. [4 points] Suppose f and f^{\prime} are differentiable for all real numbers. Let $L(x)$ be the local linearization of f at $x=3$. Suppose $f^{\prime}(x)<0$ for all $2.5<x<3.5$ and $f^{\prime \prime}(x)>0$ for all $2.5<x<3.5$. Which of the following must be true?
i. $L(3)>f(3)$
iv. $L(3.1)>f(3.1)$
vii. $L(3.9)>f(3.9)$
ii. $L(3)=f(3)$
v. $L(3.1)=f(3.1)$
viii. $L(3.9)=f(3.9)$
iii. $L(3)<f(3)$
vi. $L(3.1)<f(3.1)$
ix. $L(3.9)<f(3.9)$
x. NONE OF THESE
c. [3 points] Suppose that f is a differentiable function on $(-\infty, \infty)$ with no critical points, that both f and f^{\prime} are invertible, and that $f(4)=7$. Which of the following statements must be true?
i. f is an increasing function.
v. $\left(f^{\prime}\right)^{-1}(4)=\frac{1}{\left(f^{-1}\right)^{\prime}(7)}$.
ii. f is a decreasing function.
iii. $f^{\prime}(4)=\frac{1}{f^{-1}(7)}$.
iv. $f^{\prime}(4)=\frac{1}{\left(f^{-1}\right)^{\prime}(7)}$.
vi. $\left(f^{\prime}\right)^{-1}(7)=\frac{1}{\left(f^{-1}\right)^{\prime}(4)}$.
vii. $f^{\prime}(4)\left(f^{-1}\right)^{\prime}(4)=1$.
viii. $\left(f^{\prime}(7)\right)^{-1}=\left(f^{-1}\right)^{\prime}(7)$.
ix. NONE OF THESE

