5. [12 points] In Srebmun Foyoj, Maddy and Cal are eating lava cake. Let $T(v)$ be the time (in seconds) it takes Maddy to eat a $v \mathrm{~cm}^{3}$ serving of lava cake. Assume $T(v)$ is invertible and differentiable for $0<v<1000$. Several values of $T(v)$ and its first and second derivatives are given in the table below.

v	10	15	60	100	150	200	300
$T(v)$	11	22	84	194	393	513	912
$T^{\prime}(v)$	2.4	1.9	1.8	3.6	3.7	0.9	17.5
$T^{\prime \prime}(v)$	-0.11	-0.08	0.05	0.04	-0.04	-0.05	0.59

Remember to show your work carefully.
a. [4 points] Use an appropriate linear approximation to estimate the amount of time it takes Maddy to eat a $64 \mathrm{~cm}^{3}$ serving of lava cake. Include units.

Abstract

Answer: b. [4 points] Use the quadratic approximation of $T(v)$ at $v=200$ to estimate $T(205)$. (Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$.

Answer: $T(205) \approx$ \qquad
c. [4 points] Let $C(v)$ be the time (in seconds) it takes Cal to eat a $v \mathrm{~cm}^{3}$ serving of lava cake, and suppose $C(v)=T(\sqrt{v})$. Let $L(v)$ be the local linearization of $C(v)$ at $v=100$. Find a formula for $L(v)$. Your answer should not include the function names T or C.
\qquad

