5. [12 points] In Srebmun Foyoj, Maddy and Cal are eating lava cake. Let T(v) be the time (in seconds) it takes Maddy to eat a $v \text{ cm}^3$ serving of lava cake. Assume T(v) is invertible and differentiable for 0 < v < 1000. Several values of T(v) and its first and second derivatives are given in the table below.

v	10	15	60	100	150	200	300
T(v)	11	22	84	194	393	513	912
T'(v)	2.4	1.9	1.8	3.6	3.7	0.9	17.5
T''(v)	-0.11	-0.08	0.05	0.04	-0.04	-0.05	0.59

Remember to show your work carefully.

a. [4 points] Use an appropriate linear approximation to estimate the amount of time it takes Maddy to eat a 64 cm³ serving of lava cake. *Include units.*

Answer:

b. [4 points] Use the quadratic approximation of T(v) at v = 200 to estimate T(205). (Recall that a formula for the quadratic approximation Q(x) of a function f(x) at x = a is $Q(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.)

Answer: $T(205) \approx$ _____

c. [4 points] Let C(v) be the time (in seconds) it takes Cal to eat a $v \text{ cm}^3$ serving of lava cake, and suppose $C(v) = T(\sqrt{v})$. Let L(v) be the local linearization of C(v) at v = 100. Find a formula for L(v). Your answer should <u>not</u> include the function names T or C.