9. [14 points]
a. [8 points] Consider functions f satisfying all of the following conditions:

- $f(x)$ is differentiable on the interval $0<x<8$.
- The critical points of $f(x)$ in the interval $0<x<8$ are $x=2$, 4, and 6. ($f(x)$ has no other critical points in this interval.)
- The table below shows some values of $f(x)$ and of its derivative $f^{\prime}(x)$.

x	1	3	5	7
$f(x)$	3	6	11	0
$f^{\prime}(x)$	-1	$?$	$?$	-1

For each of the statements below, decide whether the statement is true for all functions f satisfying all of the conditions described above, for SOME of these functions f, or for NONE of these functions f. Circle the one correct choice for each statement.
(i) $\quad f(x)$ has a local minimum at $x=2$.
ALL
SOME
NONE
(ii) $f^{\prime}(3)>0$.

ALL SOME NONE
(iii) $f(x)$ has a local maximum at $x=4$.

ALL SOME NONE
(iv) There is exactly one value of a with $3<a<7$ such that $f(x)$ has a local maximum at $x=a$.

ALL
SOME
NONE
b. [6 points] Consider functions g satisfying all of the following conditions:

- $g(z)$ and $g^{\prime}(z)$ are differentiable on the interval $12<z<18$.
- The critical points of $g(z)$ in the interval $12<z<18$ are $z=14$ and $z=16 .(g(z)$ has no other critical points in this interval.)
- The table below shows some values of $g(z)$ and of its second derivative $g^{\prime \prime}(z)$.

z	13	14	15	16	17
$g(z)$	8	$?$	6	$?$	2
$g^{\prime \prime}(z)$	$?$	-1	$?$	0	$?$

For each of the statements below, decide whether the statement is true for all functions g satisfying all of the conditions described above, for sOME of these functions g, or for NONE of these functions g. Circle the one correct choice for each statement.
(i) $g(z)$ has a local extremum at $z=14$.
ALL
SOME
NONE
(ii) $g^{\prime}(15)>0$.

ALL
SOME
NONE
(iii) $g(z)$ has an inflection point at $z=16$.

