1. [12 points] The graphs of two functions, $h(p)$ and $v(p)$, are shown belgw.

The following questions concern the functions B, W, and Q defined as follows:

$$
B(p)=\frac{h(2 p)}{h(4 p)}, \quad W(p)=h(h(p)), \quad \text { and } \quad Q(p)=e^{-v(p)} .
$$

Assume that the first and second derivatives of $v(p)$ are defined everywhere, i.e. that both v and v^{\prime} are differentiable on $(-\infty, \infty)$. Note that the graph of $h(p)$ consists of line segments whose endpoints have integer (whole number) coordinates. Find the exact value of each of the quantities in \mathbf{a}. and \mathbf{b}. below. If the value does not exist, write Does not exist. Remember to show your work carefully.
a. [4 points] $B^{\prime}(-1)$

Solution: Applying the quotient and chain rules, we have

$$
B^{\prime}(p)=\frac{2 h^{\prime}(2 p) h(4 p)-4 h^{\prime}(4 p) h(2 p)}{(h(4 p))^{2}} .
$$

So $\quad B^{\prime}(-1)=\frac{2 h^{\prime}(-2) h(-4)-4 h^{\prime}(-4) h(-2)}{h(-4)^{2}}=\frac{2\left(-\frac{1}{2}\right)(-1)-4(3)\left(\frac{3}{2}\right)}{(-1)^{2}}=-17$.

$$
\text { Answer: } \quad B^{\prime}(-1)=\quad-17
$$

b. [4 points] $W^{\prime}(2)$

Solution: By the chain rule, $W^{\prime}(p)=h^{\prime}(h(p)) h^{\prime}(p)$, so

$$
W^{\prime}(2)=h^{\prime}(h(2)) h^{\prime}(2)=h^{\prime}\left(-\frac{1}{2}\right) h^{\prime}(2)=(-2)\left(\frac{5}{2}\right)=-5 .
$$

Answer: $\quad W^{\prime}(2)=$ \qquad
c. [4 points] On the interval $-2<p<2$, is $Q(p)$ always increasing, always decreasing, or neither? Show your work and explain your reasoning.
Solution: By the chain rule, $Q^{\prime}(p)=-v^{\prime}(p) e^{-v(p)}$. Since $e^{x}>0$ for all x, we know that $e^{-v(p)}$ is always positive. On the interval $-2<p<2$, we can see that $v(p)$ is increasing and never has a horizontal tangent line, which means that $v^{\prime}(p)>0$ on this interval. Thus $Q^{\prime}(p)=-v^{\prime}(p) e^{-v(p)}$ is always negative on that interval, which means that $Q(p)$ is always decreasing on this interval.

