5. [12 points] In Srebmun Foyoj, Maddy and Cal are eating lava cake. Let $T(v)$ be the time (in seconds) it takes Maddy to eat a $v \mathrm{~cm}^{3}$ serving of lava cake. Assume $T(v)$ is invertible and differentiable for $0<v<1000$. Several values of $T(v)$ and its first and second derivatives are given in the table below.

v	10	15	60	100	150	200	300
$T(v)$	11	22	84	194	393	513	912
$T^{\prime}(v)$	2.4	1.9	1.8	3.6	3.7	0.9	17.5
$T^{\prime \prime}(v)$	-0.11	-0.08	0.05	0.04	-0.04	-0.05	0.59

Remember to show your work carefully.
a. [4 points] Use an appropriate linear approximation to estimate the amount of time it takes Maddy to eat a $64 \mathrm{~cm}^{3}$ serving of lava cake. Include units.

Solution: The closest point in the table to $v=64$ is $v=60$, so this is the appropriate choice for the tangent line approximation. Based on the table, the line will go through $(60,84)$ and have slope 1.8 , so it must be $L(v)=84+1.8(v-60)$. Plugging in 64 for v, we get an estimate of 91.2 seconds.

Answer:

b. [4 points] Use the quadratic approximation of $T(v)$ at $v=200$ to estimate $T(205)$. (Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $\left.Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}.\right)$
Solution: Let $Q(v)$ be the quadratic approximation of $T(v)$ at $v=200$. Then
$Q(v)=T(200)+T^{\prime}(200)(v-200)+\frac{T^{\prime \prime}(200)}{2}(v-200)^{2}=513+0.9(v-200)+\frac{-0.05}{2}(v-200)^{2}$.
So the resulting approximation of $T(205)$ is given by
$T(205) \approx Q(205)=513+0.9(205-200)-\frac{0.05}{2}(205-200)^{2}=513+4.5-0.625=516.875$.

Answer: $T(205) \approx$ \qquad
c. [4 points] Let $C(v)$ be the time (in seconds) it takes Cal to eat a $v \mathrm{~cm}^{3}$ serving of lava cake, and suppose $C(v)=T(\sqrt{v})$. Let $L(v)$ be the local linearization of $C(v)$ at $v=100$. Find a formula for $L(v)$. Your answer should not include the function names T or C.

Solution: We know $L(v)=C(100)+C^{\prime}(100)(v-100)$. We also know $C(100)=T(10)=11$. So we need to find $C^{\prime}(100)$.
Since $C(v)=T(\sqrt{v})$, we apply the chain rule and see that $C^{\prime}(v)=\frac{1}{2 \sqrt{v}} T^{\prime}(\sqrt{v})$. Using the table above, we then find that $C^{\prime}(100)=\frac{1}{20} T^{\prime}(10)=\frac{2.4}{20}=0.12$.
So $L(v)=11+0.12(v-100)$.

Answer: $\quad L(v)=11+0.12(v-100)$

