6. [11 points]

The engineer Elur Niahc has been commissioned to build a park for the citizens of Srebmun Foyoj. The park will consist of a square attached to a rectangular dog park (as shown in the diagram on the right).
The fencing for the dog park (bold, dashed line) costs $\$ 4$ per linear meter, and the fencing for the three remaining sides of the square portion of the park (bold, solid line) costs $\$ 6$ per linear meter.

a. [5 points] Assume that Elur spends $\$ 2400$ on fencing. The resulting park will have width w meters, and the length of the dog park will be ℓ meters, as shown in the diagram above. Find a formula for ℓ in terms of w.
Solution: The cost of the fencing for the dog park is $4 \cdot(2 \ell+2 w)=8 \ell+8 w$, and the cost of the fencing for the remaining three sides is $6 \cdot(3 w)=18 w$. So the total cost of fencing is $8 \ell+8 w+18 w=8 \ell+26 w$. Since Elur spends $\$ 2400$ on fencing, we have $2400=8 \ell+26 w$. Solving for ℓ, we find $\ell=\frac{2400-26 w}{8}=300-\frac{13}{4} w=300-3.25 w$.

$$
\text { Answer: } \quad \ell=\frac{2400-26 w}{8}=300-3.25 w
$$

b. [3 points] Let $A(w)$ be the total area (in square meters) of the resulting park (including the dog park) if the width is w meters and Elur spends $\$ 2400$ on fencing. Find a formula for the function $A(w)$. The variable ℓ should not appear in your answer.
(Note: This is the function that Elur would use to find the value of w maximizing the area of the park, but you should not do the optimization in this case.)

Solution: The total area of the park in terms of w and ℓ is given by

$$
A(w)=w \cdot(w+\ell)=w^{2}+w \ell
$$

Using our expression for ℓ in terms of w, we find
$A(w)=w^{2}+w\left(\frac{2400-26 w}{8}\right)=w^{2}+w(300-3.25 w)=300 w-2.25 w^{2}$.
Answer: $\quad A(w)=w^{2}+w\left(\frac{2400-26 w}{8}\right)=300 w-2.25 w^{2}$
c. [3 points] In the context of this problem, what is the domain of $A(w)$?

Solution: Since w is a length, $w \geq 0$. Since ℓ is also a length, $\ell=\frac{2400-26 w}{8}$ must also be at least 0 . This means the biggest w can be is when $\frac{2400-26 w}{8}=0$, or when

$$
w=\frac{2400}{26}=\frac{1200}{13}=\frac{300}{3.25} \approx 92.3 .
$$

Note that if $w=0$, then the park has no area and if $\ell=0$ then there is no dog park. In the answer shown below, we have excluded these degenerate cases.

Answer:
The interval $\left(0, \frac{2400}{26}\right)$

