7. [6 points] A curve \mathcal{C} gives y as an implicit function of x. This curve passes through the point $(-2,1)$ and satisfies

$$
\frac{d y}{d x}=\frac{x^{2}-y^{4}}{2 x y^{3}} .
$$

a. [1 point] One of the values below is the slope of the curve \mathcal{C} at the point ($-2,1$). Circle that one value.

Answer: The slope at $(-2,1)$ is

$$
\begin{array}{lllllll}
-\frac{3}{16} & -\frac{1}{4} & -\frac{3}{8} & -\frac{1}{2} & -\frac{5}{8} & -\frac{3}{4} & -\frac{15}{16}
\end{array}
$$

b. [5 points] One of the following graphs is the graph of the curve \mathcal{C}. Which of the graphs i-vi is it? To receive any credit on this question, you must circle your answer next to the word "Answer" below.

Remember: To receive any credit on this question, you must circle your answer next to the word "Answer" below.
Answer:
i.
ii.
iii.
iv.
v.
vi.

Solution: The curve must pass through the point $(-2,1)$, which rules out (ii). As seen in part (a), the slope at $(-2,1)$ is negative, which rules out (vi). The tangent lines must be horizontal when the curve crosses the x - or y-axis, which rules out (i). Graph (iv) can be ruled out in a number of ways: the magnitude of the slope is too large at $(-2,1)$, there should not be vertical tangent lines away from the axes, and there should not be a horizontal tangent line at (2,2). Finally, there should be a horizontal tangent through $(1,1)$, ruling out (iii). This leaves graph (v).
Note: The slope at the point $(-2,1)$ in graph (v) as it appears here is not sufficiently steep. For this reason, full credit was also awarded for choosing graph (iii).

