10. [4 points] Let a and b be constants. Consider the curve \mathcal{C} defined by the equation

$$
\cos (a x)+b y \ln (x)=3+y^{3} .
$$

Find a formula for $\frac{d y}{d x}$ in terms of x and y. The constants a and b may appear in your answer. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.
Answer: $\frac{d y}{d x}=\square$
11. [6 points] Let $h(x)=x^{x}$. For this problem, it may be helpful to know the following formulas:

$$
h^{\prime}(x)=x^{x}(\ln (x)+1) \quad \text { and } \quad h^{\prime \prime}(x)=x^{x}\left(\frac{1}{x}+(\ln (x)+1)^{2}\right)
$$

a. [2 points] Write a formula for $p(x)$, the local linearization of $h(x)$ near $x=1$.

Answer: $p(x)=$ \qquad
b. [4 points] Write a formula for $u(x)$, the quadratic approximation of $h(x)$ at $x=1$.
(Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$.)

Answer: $u(x)=$ \qquad

