6. [14 points] The entire graph of a function $g(x)$ is shown below. Note that the graph of $g(x)$ has a horizontal tangent line at $x=1$ and a sharp corner at $x=4$.

For each of the questions below, circle all of the available correct answers.
(Circle none of these if none of the available choices are correct.)
a. [2 points] At which of the following values of x does $g(x)$ appear to have a critical point?

$$
x=1 \quad x=2 \quad x=3 \quad x=4 \quad \text { NONE OF THESE }
$$

b. [2 points] At which of the following values of x does $g(x)$ attain a local maximum?

$$
x=1 \quad x=2 \quad x=3 \quad x=4 \quad \text { NONE OF THESE }
$$

c. [6 points] Let $L(x)$ be the local linearization of $g(x)$ near $x=3$. Circle all of the statements that are true.

$$
\begin{array}{lll}
L(3)>g(3) & L(2.5)>g(2.5) & L(0)>g(0) \\
L(3)=g(3) & L(2.5)=g(2.5) & L(0)=g(0) \\
L(3)<g(3) & L(2.5)<g(2.5) & L(0)<g(0) \\
L^{\prime}(3)>g^{\prime}(3) & L^{\prime}(2.5)>g^{\prime}(2.5) & L(5)>g(5) \\
L^{\prime}(3)=g^{\prime}(3) & L^{\prime}(2.5)=g^{\prime}(2.5) & L(5)=g(5) \\
L^{\prime}(3)<g^{\prime}(3) & L^{\prime}(2.5)<g^{\prime}(2.5) & L(5)<g(5)
\end{array}
$$

NONE OF THESE
d. [2 points] On which of the following intervals does $g(x)$ satisfy the hypotheses of the Mean Value Theorem?

$$
[0,2] \quad[0,4] \quad[3,5] \quad[4,5] \quad \text { NONE OF THESE }
$$

e. [2 points] On which of the following intervals does $g(x)$ satisfy the conclusion of the Mean Value Theorem?

$$
[0,2] \quad[0,4] \quad[3,5] \quad[4,5] \quad \text { NONE OF THESE }
$$

