10. [4 points] Let a and b be constants. Consider the curve \mathcal{C} defined by the equation

$$
\cos (a x)+b y \ln (x)=3+y^{3} .
$$

Find a formula for $\frac{d y}{d x}$ in terms of x and y. The constants a and b may appear in your answer. To earn credit for this problem, you must compute this by hand and show every step of your work clearly.
Solution: We use implicit differentiation.

$$
\begin{aligned}
\frac{d}{d x}(\cos (a x)+b y \ln (x)) & =\frac{d}{d x}\left(3+y^{3}\right) \\
-a \sin (a x)+\frac{b y}{x}+b \ln (x) \frac{d y}{d x} & =3 y^{2} \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{\frac{b y}{x}-a \sin (a x)}{3 y^{2}-b \ln (x)}
\end{aligned}
$$

Answer: $\frac{d y}{d x}=\frac{\frac{b y}{x}-a \sin (a x)}{3 y^{2}-b \ln (x)}$

