11. [6 points] Let $h(x)=x^{x}$. For this problem, it may be helpful to know the following formulas:

$$
h^{\prime}(x)=x^{x}(\ln (x)+1) \quad \text { and } \quad h^{\prime \prime}(x)=x^{x}\left(\frac{1}{x}+(\ln (x)+1)^{2}\right) .
$$

a. [2 points] Write a formula for $p(x)$, the local linearization of $h(x)$ near $x=1$.

Solution: $\quad h(1)=1$ and $h^{\prime}(1)=1^{1}(\ln (1)+1)=1$, so $p(x)=1+1 \cdot(x-1)=x$.

Answer: $p(x)=$ \qquad x
b. [4 points] Write a formula for $u(x)$, the quadratic approximation of $h(x)$ at $x=1$. (Recall that a formula for the quadratic approximation $Q(x)$ of a function $f(x)$ at $x=a$ is $\left.Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}.\right)$
Solution: $\quad h^{\prime \prime}(1)=1\left(1+(0+1)^{2}\right)=2$, so $u(x)=1+(x-1)+\frac{2}{2}(x-1)^{2}=x^{2}-x+1$.

Answer: $u(x)=1+(x-1)+(x-1)^{2}\left(=x^{2}-x+1\right)$

