2. [10 points] Suma is making cylindrical paper cups that will be used to serve milkshakes at Qabil's Creamery. She rolls paper into a cylinder and then attaches it to the base. The thicker material that she uses for the base costs $\$ 4.30$ per square meter, and the lighter material that she uses for the vertical part of the cup costs $\$ 2.20$ per square meter. The radius of the circular base is $r$ meters, and the height of the cup is $h$ meters, as shown in the diagram on the right.
It may be helpful to know that the surface area of the vertical portion of the cup is $2 \pi r h$.


Note: The top of the cup is left open.
Throughout this problem, assume that the material that Suma uses to make one paper cup costs $\$ 0.12$.
a. [4 points] Find a formula for $h$ in terms of $r$.

Solution: The area of the vertical portion of the cup is $2 \pi r h$ square meters, so the cost for the material for the vertical portion of one cup is $(2.20)(2 \pi r h)$ dollars. Since the base of the cup is circular, its area is $\pi r^{2}$ square meters, and the cost for the material for the base of one cup is $(4.30)\left(\pi r^{2}\right)$ dollars. So the material that Suma uses to make one cup costs a total of $(2.20)(2 \pi r h)+(4.30)\left(\pi r^{2}\right)$ dollars.
Therefore, we have $\quad(2.20)(2 \pi r h)+(4.30)\left(\pi r^{2}\right)=0.12$.
Solving for $h$ we find that $\quad h=\frac{0.12-4.3 \pi r^{2}}{4.4 \pi r}$.

$$
\text { Answer: } \quad h=\Longrightarrow \frac{0.12-4.3 \pi r^{2}}{4.4 \pi r}
$$

b. [2 points] Let $V(r)$ be the volume (in cubic meters) of the cup that Suma makes given that the material for the cup costs $\$ 0.12$ and the radius of the cup is $r$ meters. Find a formula for $V(r)$. The variable $h$ should not appear in your answer.
(Note: This is the function that Suma would use to find the value of $r$ maximizing the volume of the cup, but you should not do the optimization in this case.)

Solution: Since Suma's cup is a cylinder, its volume is $\pi r^{2} h$. So using what we found in part a. above, we see that $V(r)=\pi r^{2} \cdot \frac{0.12-4.3 \pi r^{2}}{4.4 \pi r}$ which simplifies to $V(r)=$ $\frac{r\left(0.12-4.3 \pi r^{2}\right)}{4.4}$.

$$
\text { Answer: } \quad V(r)=\underline{\left(\pi r^{2}\right) \cdot \frac{0.12-4.3 \pi r^{2}}{4.4 \pi r} \text { or } \frac{r\left(0.12-4.3 \pi r^{2}\right)}{4.4}}
$$

c. [4 points] In the context of this problem, what is the domain of $V(r)$ ?

Solution: Since $r$ is a length, it cannot be negative. Note also that if $r=0$, then the cost of the materials for the cup would be 0 dollars (rather than $\$ 0.12$ ), so $r$ must be positive. The height $h$ also cannot be negative, and as $h$ decreases, $r$ increases. Therefore, $r$ can certainly not be greater than when $h=0$, in which case $4.3\left(\pi r^{2}\right)=0.12$, so $r=\sqrt{\frac{0.12}{4.3 \pi}}$ (since $r$ must be positive). In this case, the cup would have height 0 and thus hold no milkshake, so we may choose to exclude this endpoint of the domain.

Answer:

