3. [7 points] Consider the curve \mathcal{D} defined by the equation

$$
x^{2} y(1-y)=9 .
$$

Note that the curve \mathcal{D} satisfies $\quad \frac{d y}{d x}=\frac{2 x y(y-1)}{x^{2}(1-2 y)}$.
a. [4 points] Exactly one of the following points (x, y) lies on the curve \mathcal{D}. Circle that one point.

$$
\begin{equation*}
(1,-8) \tag{0.9,10}
\end{equation*}
$$

$(10,0.9)$

Then find an equation for the tangent line to the curve \mathcal{D} at the point you chose.
Solution: At the point $(0.9,10)$, the slope of the tangent line is

$$
\frac{2 \cdot 10 \cdot 0.9 \cdot(0.9-1)}{100 \cdot(1-2 \cdot 0.9)}=\frac{1.8}{80}=\frac{9}{400}=0.0225 .
$$

Answer: $y=\underline{0.9+\frac{1.8}{80}(x-10) \quad(=0.625+0.0225 x)}$
b. [3 points] Find all points on the curve \mathcal{D} where the slope of the curve is undefined. Give your answers as ordered pairs. Write NONE if there are no such points.

Solution: The slope is undefined for points on \mathcal{D} when the denominator of $\frac{d y}{d x}$ is 0 . This happens when $x^{2}(1-2 y)=0$, so $x=0$ or $y=\frac{1}{2}$.
When $x=0$, we know that $x^{2} y(1-y)=0$ (rather than 9), so there are no such points on the curve \mathcal{D}.
When $y=\frac{1}{2}$, the equation for the curve gives $x^{2} \cdot \frac{1}{2}\left(1-\frac{1}{2}\right)=9$. So $x^{2}=36$ and therefore $x= \pm 6$. This results in the two points $\left(6, \frac{1}{2}\right)$ and $\left(-6, \frac{1}{2}\right)$.

Answer: $(x, y)=\left(6, \frac{1}{2}\right),\left(-6, \frac{1}{2}\right)$

