3. [7 points] Consider the curve \(D \) defined by the equation
\[x^2y(1-y) = 9. \]

Note that the curve \(D \) satisfies
\[\frac{dy}{dx} = \frac{2xy(y-1)}{x^2(1-2y)}. \]

a. [4 points] Exactly one of the following points \((x, y)\) lies on the curve \(D \).
Circle that one point.

\[(0.9, 10) \quad (1, -8) \quad (3, 9) \quad (9, 3) \quad (10, 0.9)\]

Then find an equation for the tangent line to the curve \(D \) at the point you chose.

Solution: At the point \((0.9, 10)\), the slope of the tangent line is
\[
\frac{2 \cdot 10 \cdot 0.9 \cdot (0.9 - 1)}{100 \cdot (1 - 2 \cdot 0.9)} = \frac{1.8}{80} = \frac{9}{400} = 0.0225.
\]

Answer:
\[y = 0.9 + \frac{1.8}{80}(x - 10) \quad (\approx 0.625 + 0.0225x) \]

b. [3 points] Find all points on the curve \(D \) where the slope of the curve is undefined. Give your answers as ordered pairs. Write NONE if there are no such points.

Solution: The slope is undefined for points on \(D \) when the denominator of \(\frac{dy}{dx} \) is 0. This happens when \(x^2(1-2y) = 0 \), so \(x = 0 \) or \(y = \frac{1}{2} \).

When \(x = 0 \), we know that \(x^2y(1-y) = 0 \) (rather than 9), so there are no such points on the curve \(D \).

When \(y = \frac{1}{2} \), the equation for the curve gives \(x^2 \cdot \frac{1}{2}(1 - \frac{1}{2}) = 9 \). So \(x^2 = 36 \) and therefore \(x = \pm 6 \). This results in the two points \((6, \frac{1}{2})\) and \((-6, \frac{1}{2})\).

Answer: \((x, y) = (6, \frac{1}{2}), (-6, \frac{1}{2})\)