10. [12 points] Let \(f(x) \) be a continuous function defined on \(-3 < x < 5\). The graph of \(f'(x) \) (the derivative of \(f(x) \)) is shown below. Note that \(f'(x) \) has a sharp corner at \(x = 2 \).

For each of the following parts, circle all of the available correct answers.

a. [2 points] At which of the following values of \(x \) does \(f(x) \) appear to have a critical point?
 \[
 x = -2 \quad x = -1 \quad x = 0 \quad x = 1 \quad x = 2 \quad x = 4 \quad \text{NONE OF THESE}
 \]

b. [2 points] At which of the following values of \(x \) does \(f(x) \) attain a global maximum on the interval \([0, 3]\)?
 \[
 x = 0 \quad x = 1 \quad x = 2 \quad x = 3 \quad \text{NONE OF THESE}
 \]

c. [2 points] At which of the following values of \(x \) does \(f(x) \) attain a local minimum?
 \[
 x = -2 \quad x = -1 \quad x = 0 \quad x = 1 \quad x = 4 \quad \text{NONE OF THESE}
 \]

d. [2 points] Which of the following values of \(x \) are not in the domain of \(f''(x) \)?
 \[
 x = -1 \quad x = 0 \quad x = 1 \quad x = 2 \quad \text{NONE OF THESE}
 \]

e. [2 points] At which of the following values of \(x \) does \(f(x) \) appear to have an inflection point?
 \[
 x = -2 \quad x = -1 \quad x = 0 \quad x = 1 \quad x = 4 \quad \text{NONE OF THESE}
 \]

f. [2 points] On which of the following intervals is \(f''(x) \) increasing over the entire interval?
 \[
 (-3, -1) \quad (-1, 0) \quad (-1, 1) \quad (0, 2) \quad \text{NONE OF THESE}
 \]