3. [10 points] Jane is designing a water tank using a cone of height h meters and a circular base of radius r meters as shown below.

$$
\begin{aligned}
r & =\text { radius } \\
h & =\text { height } \\
s & =\text { length of slant side }
\end{aligned}
$$

a. [4 points] The cost of the material for the tank is 3 dollars per square meter for the circular base and 5 dollars per square meter for the cone (without the base). The area, A, of the material used for the cone (without the base) is given by the formula $A=\pi r s$ where s is the length of the slant side of the cone, in meters. Find a formula for s in terms of the radius r if Jane plans to spend 200 dollars on the water tank. Your answer should not include the variable h.

$$
s=
$$

\qquad
b. [2 points] In the context of this problem, what are appropriate constraints on r and/or s ? Choose the one best answer.

$$
0<r<\infty \quad 0<r<s \quad 0<r<\sqrt{\frac{200}{3 \pi}} \quad 0<s<r \quad 0<r<\sqrt{\frac{200}{5 \pi}}
$$

c. [4 points] Find a formula for $V(r)$, the volume of the tank (in cubic meters) in terms of the radius r. Recall that the volume of a cone with radius R and height H is $\frac{1}{3} \pi R^{2} H$. Your answer should not include the variables h and/or s.

$$
V(r)=
$$

\qquad

