6. [6 points] Let $L(x)$ be the linear approximation and $Q(x)$ be the quadratic approximation to the function $d(x)$ near $x = 1$. Suppose that $d'(x)$, $d''(x)$ and $d'''(x)$ are defined for all real numbers. Let $Q(x) = 7(x - 1)^2 - 8(x - 1) + 3$. Find the exact value of the following quantities. If there is not enough information to answer the question, write “NI”.

\[
\begin{align*}
 d(0) &= ______ \\
 d'(1) &= ______ \\
 d''(1) &= ______ \\
 L'(2) &= ______ \\
 Q'''(1) &= ______ \\
 d'''(1) &= ______ \\
\end{align*}
\]

7. [5 points] Sketch graphs of functions $f(x)$ and $g(x)$ satisfying the conditions below, or circle NO SUCH FUNCTION EXISTS. You do not need to explain your answer.

A function $f(x)$ defined on the interval $(0, 4)$ that satisfies:

i) $f'(x) > 0$ for all $x \neq 2$.

ii) $x = 2$ is a global minimum.

A continuous function $g(x)$ defined on the interval $(0, 4)$ that satisfies:

i) $\lim_{x \to 2^-} g'(x) = \infty$.

ii) $\lim_{x \to 2^+} g'(x) = 0$.

or

NO SUCH FUNCTION EXISTS

or

NO SUCH FUNCTION EXISTS