1. [14 points] Let g be a twice differentiable function defined on $-1<x<11$. Some values of $g(x)$, $g^{\prime}(x)$ and $g^{\prime \prime}(x)$ are shown in the table below.

x	0	2	4	6	8	10
$g(x)$	-2	-1	3	4	5	6
$g^{\prime}(x)$	0.5	2	$?$	5	1	2
$g^{\prime \prime}(x)$	2	1	5	-3	-1	0.5

a. [7 points] Find the exact value of the following expressions. If there is not enough information to compute the value, write "NI". Show all your work.
i) Let $h(x)=2^{g(x)}$. Find $h^{\prime}(6)$.

Solution: We have that $h^{\prime}(x)=(\ln 2) 2^{g(x)} g^{\prime}(x)$ and so

$$
h^{\prime}(6)=(\ln 2) 2^{g(6)} g^{\prime}(6)=80 \ln 2
$$

ii) Let $k(x)=g(x) g^{\prime}(x)$. Find the value of $g^{\prime}(4)$ if $k^{\prime}(4)=15$.

Solution: The product rule gives $k^{\prime}(x)=g(x) g^{\prime \prime}(x)+\left(g^{\prime}(x)\right)^{2}$ and so $k^{\prime}(4)=g(4) g^{\prime \prime}(4)+$ $\left(g^{\prime}(4)\right)^{2}$. Plugging in values, $15=3 \cdot 5+g^{\prime}(4)^{2}$ and so $g^{\prime}(4)=0$.
iii) Let $r(x)=\frac{\sin (x)}{g(x)}$. Find $r^{\prime}(0)$.

Solution: By the quotient rule, $r^{\prime}(x)=\frac{g(x) \cos (x)-\sin (x) g^{\prime}(x)}{g(x)^{2}}$, and so

$$
r^{\prime}(0)=\frac{g(0)}{g(0)^{2}}=-1 / 2 .
$$

b. [7 points] Let $j(x)=g(14-4 x)$.
i) Use the values from the table to find a formula for $L(x)$, the linear approximation to $j(x)$ at $x=2$.

Solution: We have that $j(2)=g(6)=4$ and $j^{\prime}(2)=-4 g^{\prime}(6)=-20$. Therefore,

$$
L(x)=4-20(x-2)=-20 x+44 .
$$

ii) Find an approximate value for $j(2.25)$ using your formula for $L(x)$.

Solution: Using the formula from above,

$$
j(2.25) \approx L(2.25)=4-20(0.25)=-1
$$

iii) Is your value an overestimate or underestimate of the exact value of $j(2.25)$? Circle your answer.

