1. [14 points] Let g be a twice differentiable function defined on -1 < x < 11. Some values of g(x), g'(x) and g''(x) are shown in the table below.

x	0	2	4	6	8	10
g(x)	-2	-1	3	4	5	6
g'(x)	0.5	2	?	5	1	2
g''(x)	2	1	5	-3	-1	0.5

a. [7 points] Find the *exact* value of the following expressions. If there is not enough information to compute the value, write "NI". Show all your work.

i) Let $h(x) = 2^{g(x)}$. Find h'(6).

Solution: We have that $h'(x) = (\ln 2)2^{g(x)}g'(x)$ and so $h'(6) = (\ln 2)2^{g(6)}g'(6) = 80 \ln 2$

ii) Let k(x) = g(x)g'(x). Find the value of g'(4) if k'(4) = 15.

Solution: The product rule gives $k'(x) = g(x)g''(x) + (g'(x))^2$ and so $k'(4) = g(4)g''(4) + (g'(4))^2$. Plugging in values, $15 = 3 \cdot 5 + g'(4)^2$ and so g'(4) = 0. iii) Let $r(x) = \frac{\sin(x)}{g(x)}$. Find r'(0).

Solution: By the quotient rule, $r'(x) = \frac{g(x)\cos(x) - \sin(x)g'(x)}{g(x)^2}$, and so $r'(0) = \frac{g(0)}{g(0)^2} = -1/2.$

- **b**. [7 points] Let j(x) = g(14 4x).
 - i) Use the values from the table to find a formula for L(x), the linear approximation to j(x) at x = 2.

Solution: We have that j(2) = g(6) = 4 and j'(2) = -4g'(6) = -20. Therefore,

$$L(x) = 4 - 20(x - 2) = -20x + 44.$$

ii) Find an approximate value for j(2.25) using your formula for L(x).

Solution: Using the formula from above,

$$j(2.25) \approx L(2.25) = 4 - 20(0.25) = -1.$$

iii) Is your value an overestimate or underestimate of the exact value of j(2.25)? Circle your answer.

OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFORMATION

University of Michigan Department of Mathematics