10. [12 points] Let $f(x)$ be a continuous function defined on $-3<x<5$. The graph of $f^{\prime}(x)$ (the derivative of $f(x)$) is shown below. Note that $f^{\prime}(x)$ has a sharp corner at $x=2$.

For each of the following parts, circle all of the available correct answers.
a. [2 points] At which of the following values of x does $f(x)$ appear to have a critical point?

Solution:

$$
\begin{array}{llllll}
x=-2 & \mathrm{x}=-1 & \mathrm{x}=0 & x=1 & x=2 & \mathrm{x}=4 \\
\text { NONE OF THESE }
\end{array}
$$

b. [2 points] At which of the following values of x does $f(x)$ attain a global maximum on the interval $[0,3]$?

Solution:

$$
\begin{array}{llll}
x=0 & x=1 & x=2 & \mathrm{x}=3
\end{array} \quad \text { NONE OF THESE }
$$

c. [2 points] At which of the following values of x does $f(x)$ attain a local minimum?

Solution:

$$
\begin{array}{lllll}
x=-2 & \mathrm{x}=-1 & x=0 & x=1 & x=4
\end{array}
$$

NONE OF THESE
d. [2 points] Which of the following values of x are not in the domain of $f^{\prime \prime}(x)$?

Solution:

$$
\begin{array}{lllll}
\mathrm{x}=-1 & x=0 & x=1 & \mathrm{x}=2 & \text { NONE OF THESE }
\end{array}
$$

e. [2 points] At which of the following values of x does $f(x)$ appear to have an inflection point?

Solution:

$$
\begin{array}{llllll}
\mathrm{x}=-2 & \mathrm{x}=-1 & \mathrm{x}=0 & x=1 & x=4 & \text { NONE OF THESE }
\end{array}
$$

f. [2 points] On which of the following intervals is $f^{\prime \prime}(x)$ increasing over the entire interval? Solution:
$(-3,-1) \quad(-1,0) \quad(-1,1) \quad$ NONE OF THESE

