10. [12 points] Let f(x) be a continuous function defined on -3 < x < 5. The graph of f'(x) (the derivative of f(x)) is shown below. Note that f'(x) has a sharp corner at x = 2.

For each of the following parts, circle <u>all</u> of the available correct answers.

a. [2 points] At which of the following values of x does f(x) appear to have a critical point?

Solution:							
	x = -2	x=-1	x=0	x = 1	x = 2	x=4	NONE OF THESE

b. [2 points] At which of the following values of x does f(x) attain a global maximum on the interval [0,3]?

Solution:

$$x = 0$$
 $x = 1$ $x = 2$ x=3 NONE OF THESE

c. [2 points] At which of the following values of x does f(x) attain a local minimum?

Solution:

$$x = -2$$
 $x=-1$ $x = 0$ $x = 1$ $x = 4$ NONE OF THESE

d. [2 points] Which of the following values of x are <u>not</u> in the domain of f''(x)?

Solution:

$$x=-1$$
 $x=0$ $x=1$ $x=2$ NONE OF THESE
e. [2 points] At which of the following values of x does $f(x)$ appear to have an inflection point?

Solution:

$$x=-2$$
 $x=-1$ $x=0$ $x=1$ $x=4$ NONE OF THESE
[2 points] On which of the following intervals is $f''(x)$ increasing over the entire interval?

f. [2 points] On which of the following intervals is f''(x) increasing over the <u>entire</u> interval? Solution: (-1,0) (-1,1) (0,2) NONE OF THESE