3. [10 points] Jane is designing a water tank using a cone of height \(h \) meters and a circular base of radius \(r \) meters as shown below.

\[
\begin{align*}
 r &= \text{radius} \\
 h &= \text{height} \\
 s &= \text{length of slant side}
\end{align*}
\]

a. [4 points] The cost of the material for the tank is 3 dollars per square meter for the circular base and 5 dollars per square meter for the cone (without the base). The area, \(A \), of the material used for the cone (without the base) is given by the formula \(A = \pi rs \) where \(s \) is the length of the slant side of the cone, in meters. Find a formula for \(s \) in terms of the radius \(r \) if Jane plans to spend 200 dollars on the water tank. Your answer should not include the variable \(h \).

Solution: The cost of the total tank is equal to the cost of the base + the cost of the cone without the base. So if Jane plans to spend $200,

\[
200 = 3(\pi r^2) + 5(\pi rs)
\]

and therefore

\[
s = \frac{200 - 3\pi r^2}{5\pi r}.
\]

b. [2 points] In the context of this problem, what are appropriate constraints on \(r \) and/or \(s \)? Choose the **one** best answer.

\[
0 < r < \infty \quad 0 < r < s \quad 0 < r < \sqrt{\frac{200}{3\pi}} \quad 0 < s < r \quad 0 < r < \sqrt{\frac{200}{5\pi}}
\]

c. [4 points] Find a formula for \(V(r) \), the volume of the tank (in cubic meters) in terms of the radius \(r \). Recall that the volume of a cone with radius \(R \) and height \(H \) is \(\frac{1}{3}\pi R^2H \). Your answer should not include the variables \(h \) and/or \(s \).

Solution: The volume of the tank is \(V = \frac{1}{3}\pi r^2h \). By the Pythagorean Theorem, \(s^2 = r^2 + h^2 \), and so \(h = \sqrt{s^2 - r^2} \). We also know \(s \) in terms of \(r \) from the first part of the problem, and so

\[
h = \sqrt{\left(\frac{200 - 3\pi r^2}{5\pi r}\right)^2 - r^2}.
\]

Therefore,

\[
V(r) = \frac{1}{3}\pi r^2 \sqrt{\left(\frac{200 - 3\pi r^2}{5\pi r}\right)^2 - r^2}.
\]