6. [6 points] Let \(L(x) \) be the linear approximation and \(Q(x) \) be the quadratic approximation to the function \(d(x) \) near \(x = 1 \). Suppose that \(d'(x) \), \(d''(x) \) and \(d'''(x) \) are defined for all real numbers. Let \(Q(x) = 7(x - 1)^2 - 8(x - 1) + 3 \). Find the exact value of the following quantities. If there is not enough information to answer the question, write “NI”.

\[
\begin{align*}
 d(0) &= \text{NI} & d'(1) &= -8 & d''(1) &= 14 \\
 L'(2) &= -8 & Q'''(1) &= 0 & d'''(1) &= \text{NI}
\end{align*}
\]

Solution:

7. [5 points] Sketch graphs of functions \(f(x) \) and \(g(x) \) satisfying the conditions below, or circle NO SUCH FUNCTION EXISTS. You do not need to explain your answer.

A function \(f(x) \) defined on the interval \((0, 4)\) that satisfies:

i) \(f'(x) > 0 \) for all \(x \neq 2 \).

ii) \(x = 2 \) is a global minimum.

\[y = f(x) \]

\[y = g(x) \]

or

NO SUCH FUNCTION EXISTS